RUHR-UNIVERSITÄT BOCHUM

Efficient Elliptic-Curve Cryptography using Curve25519 on Reconfigurable Devices

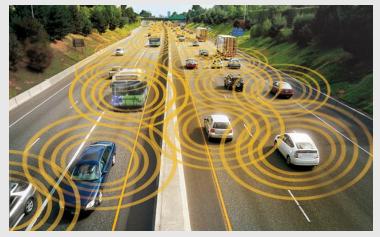
Pascal Sasdrich, Tim Güneysu

4/14/2014

RUB

10th International Symposium on Applied Reconfigurable Computing, Vilamoura, Portugal

Content


- 1. Motivation and Contribution
- 2. Elliptic Curve Cryptography
- 3. Implementation
- 4. Improvements
- 5. Results and Comparison
- 6. Conclusion

Motivation

Tor-Router

- Zynq FPGA on Zedboard
- router for Tor-network
- privacy protection
- defense against surveillance/analysis

http://www.extremetech.com/

Car2Car Communication

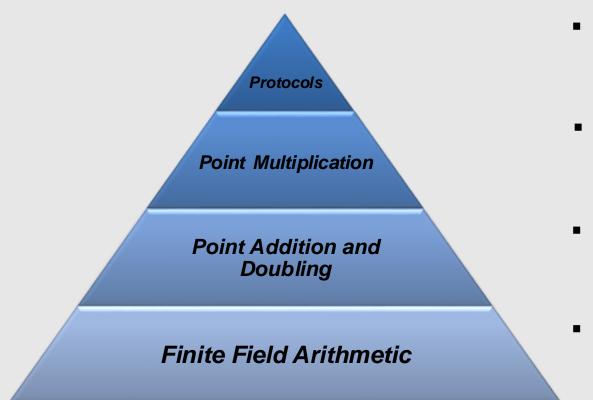
- exchange of signed messages
- signature generation using ECC
- authenticity of messages
- protection against manipulation

RUB

Ruhr-University Bochum | Secure Hardware Group

Contribution

Curve25519 function was chosen for fast **software** implementations.


Our Contribution:

- 1. First efficient high-speed hardware implementation of Curve25519.
- 2. Improvement of implementation through parallelization techniques. More than 32000 point multiplications per second.

Content

- 1. Motivation and Contribution
- 2. Elliptic Curve Cryptography
- 3. Implementation
- 4. Improvements
- 5. Results and Comparison
- 6. Conclusion

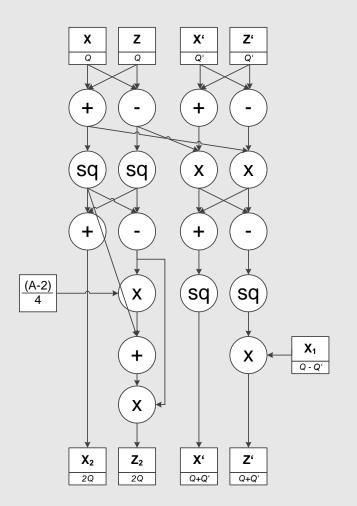
Elliptic-Curve Cryptography

 Diffie-Hellman Key Exchange RUF

- 255 calls of Double-And-Add function, timing constant
- Montgomery's Ladder, (always) Double-And-Add
- Modular reduction mod
 P, multiplication by 19,
 Pseudo Mersenne Prime

Curve25519 Function

Inputs:


- k (secret key, 255-bit)
- P (public point, affine coordinates x and y)

Computation:

- compute k x P in 255 steps
- scan k bitwise and call double-and-add algorithm
- swap inputs X/Z and X'/Z' depending on scanned bit

• Output:

- requires conversion from projective to affine coordinates
- inversion of Z with Fermat's Little Theorem (Z⁻¹ = X^{P-2})
- return result R = X x Z⁻¹

RUE

Content

- 1. Motivation and Contribution
- 2. Elliptic Curve Cryptography
- 3. Implementation
- 4. Improvements
- 5. Results and Comparison
- 6. Conclusion

Design Considerations

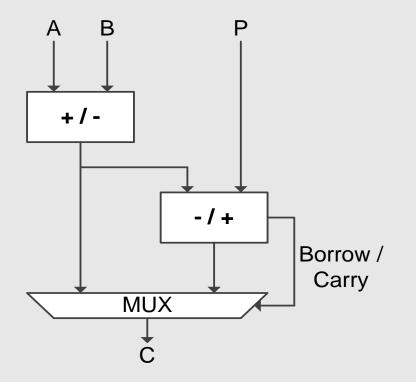
Target Platform:

latest Xilinx FPGA generation Zynq XC7Z020 on Digilent ZedBoad

RU

FPGA provides many DSP slices:

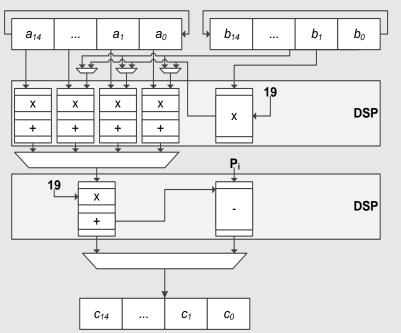
dedicated processors for integer operations


DSP addition and multiplication stages:

48-bit addition and 25x18-bit signed multiplication

Curve25519 operands:

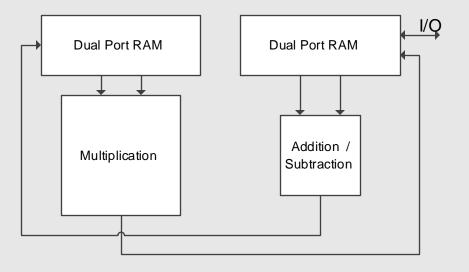
255-bit length, can be divided into 15 x 17-bit chunks


Finite Field Arithmetic

Modular Adder C = A + B mod P:

- always addition/subtraction and reduction
- output depends borrow/carry
- serial computation with 2 DSPs

Finite Field Arithmetic

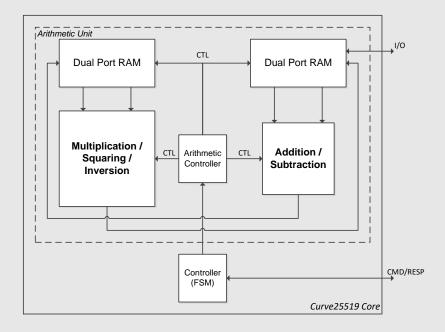


Modular Multiplier C = A x B mod P:

- pre-reduction of partial products
- Reduction by multiplication with 19
- accumulation of 17x17-bit products
- final accumulation and reduction (modified modular adder)
- DSPs for addition, multiplication and accumulation
- pipelining increases throughput

RUB

Point Addition and Doubling


Double-And-Add:

• adder and multiplier can operate in parallel (2 BRAMs required)

RU

- addition and multiplication operate in butterfly-mode
- point addition and doubling is computed according to Montgomery's ladder
- always compute point doubling and point addition in parallel

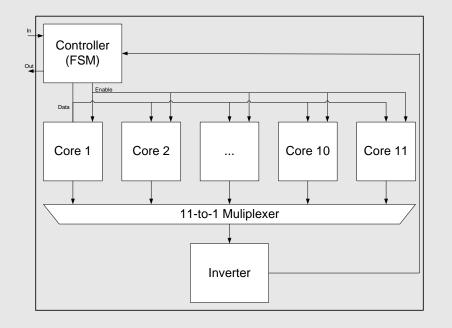
Single Core Architecture

Parallel operation:

addition and multiplication can operate in parallel and independently

Inversion:

is realized by means of Little Fermat's Theorem using (many) multiplications


Controller FSM

manages the Diffie-Hellman computation by calling double-andadd function and final inversion

Content

- 1. Motivation and Contribution
- 2. Elliptic Curve Cryptography
- 3. Implementation
- 4. Improvements
- 5. Results and Comparison
- 6. Conclusion

Multi Core Improvements

1. Parallelization:

multiple instances of single core in parallel

RUF

2. Dedicated inverter stage:

inversion is covered by binary EEA based inverter

3. Minimization:

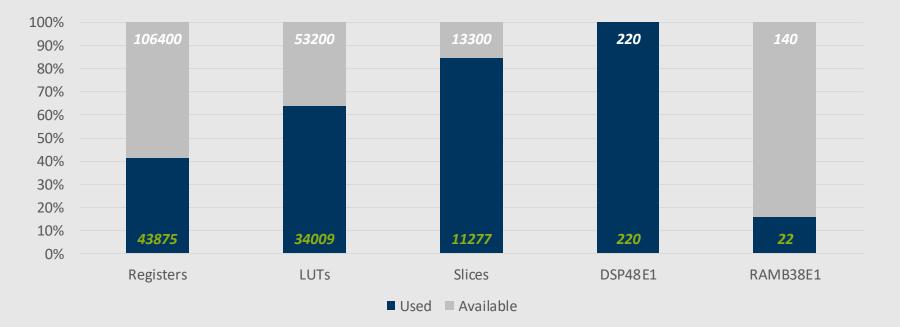
cores now only support point doubling since inversion is outsourced

Content

- 1. Motivation and Contribution
- 2. Elliptic Curve Cryptography
- 3. Implementation
- 4. Improvements

5. Results and Comparison

6. Conclusion


Resources | Single Core Architecture

Single Core Architecture on Zynq XC7Z020:

- 200MHz clock frequency
- 2518 point multiplications per second

Resources | Multi Core Architecture

RUB

Multi Core Architecture on Zynq XC7Z020:

- 100MHz clock frequency for inverter, 200 MHz for Curve25519 cores
- 32303 point multiplications per second

Results and Comparison

Device	Implementation	Logic	Clock	OP/s
XC7Z020	255-bit (Curve25519)	1029 LS/20 DSP	200 MHz	2518
XC7Z020	255-bit (Curve25519)	11277 LS/220 DSP	100 MHz	32303
XC4VFX12-12	256-bit (NIST)	1715 LS/32 DSP	490 MHz	2020
XC2VP125-7	256-bit (any)	15755 LS/256 MUL	39.5 MHz	260
Intel Core i3	255-bit (Curve25519)	64 bit	2.1 GHz	10810
AMD FX-4170	255-bit (Curve25519)	64 bit	4.2 GHz	14285

RUB

Content

- 1. Motivation and Contribution
- 2. Elliptic Curve Cryptography
- 3. Implementation
- 4. Improvements
- 5. Results and Comparison

6. Conclusion

Conclusion

Curve25519 was designed for fast software implementations but we showed how to implement the curve function efficiently in hardware.

Our design convinces with:

- moderate resource requirements (~1000 slices/20 DSP/2 BRAM per core)
- ~2500/~32000 OP/s on single/multi core architecture

Our design is cheap and easy deployable for many future security applications (e.g. for TOR-Routers and nTor).

RUHR-UNIVERSITÄT BOCHUM

Efficient Elliptic-Curve Cryptography using Curve25519 on Reconfigurable Devices

Pascal Sasdrich, Tim Güneysu

4/14/2014

RUB

10th International Symposium on Applied Reconfigurable Computing, Vilamoura, Portugal

Thank you for your attention! Any Questions?