
Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

26.03.2015

Side-Channel Protection by Randomizing 
Look-Up Tables on Reconfigurable Hardware
- Pitfalls of Memory Primitives -

Pascal Sasdrich, Oliver Mischke, 

Amir Moradi, and Tim Güneysu

COSADE 2015, Berlin, Germany



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

Outline

1. Motivation 

2. Xilinx Memory Primitives

3. Block Memory Content Scrambling

4. Contribution

5. Randomized Look-Up Tables

6. Case Study and S-Box Designs

7. Evaluation and Results

8. Conclusion

2



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

Motivation

• At CHES 2011: 

Block Memory content Scrambling (BMS) was proposed 

as an effective way of 1st order side-channel protection.

• Our goals:

– Analyze different ways for 1st order protection using 

randomized look-up tables.

– Find optimal choices for FPGAs and 8-bit S-boxes.

3



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

Xilinx Memory Primitives

• Specific slice logic components can 
be implemented as distributed 
memory:

– RAM32M (32x8bit SPRAM)

– RAM64M (64x4bit SPRAM)

– RAM256X1S (256x1bit SPRAM)

• Dedicated block memory primitives 
(RAMB8BWER) can be used as true 
dual-port block memory

4



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

Block Memory Content Scrambling

Main idea: 
– Store 2 S-/T-Tables in one BRAM

– First table is active context and used for encryption.

– Second table is passive context and updated (scrambled) with fresh 
randomness.

– After update, contexts are switched.

Disadvantages:
– Area overhead

– Latency

– Shared masks

T. Güneysu and A. Moradi. Generic Side-Channel Countermeasures for Reconfigurable 
Devices.

5



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

Contribution

1. Analyzed Xilinx FPGA memory primitives to 
prevent 1st order side-channel leakage.

2. Built randomized look-up tables of different 

memory primitives.

3. Evaluated designs using a state-of-the-art leakage 
assessment methodology.

4. We revealed pitfalls of using memory primitives 

for side-channel protection.

6



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

Randomized Look-Up Tables

RAMB8BWER RAM64M

RAM32M RAM256X1S

7



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

Case Study

• AES as case study

• Build randomized 
look-up tables 
using different 
memory primitives

• Replaced 
SubBytes with 
different designs.

8



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

S-Box Designs

Memory SubBytes Configuration Max.

Primitive Logic Dist. Mem. Block Mem. Logic Memory Throughput

(LUT) (LUT) (BRAM16) (LUT) (FF) (Mbit/s)

BMS [CHES11] - - 16 1706 1169 35.4

RAMB8BWER - - 8 298 8 68.6

RAM256X1S 128 512 - 298 8 77.0

RAM64M 768 512 - 727 6 247.3

RAM32M 1920 512 - 1222 5 363.3

9



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

Power Traces

T =
𝑋𝐹 − 𝑋𝑅

𝑆𝐹
2

𝑁𝐹
+

𝑆𝑅
2

𝑁𝑅

NF = Size of F

XF = Mean of F
SF = Std. deviation of F

NR = Size of R
X𝑅 = Mean of R
S𝑅 = Std. deviation of R

fix vs. random: 

• 1 fix plaintext Fix

(F)

Random

(R)

Traces

Evaluation
Welch‘s T-Test

10



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

Results

• leakage is detectable for 
distributed memory primitives

• assume that leakage is due to 
internal slice architecture

• BRAM primitives exhibit no 
detectable leakage (even for 
larger trace numbers)

RAM32M (1 million traces)

RAM64M (1 million traces)

RAM256X1S (1 million traces)

RAMB8BWER (10 million traces)

11



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

Conclusion

Our results infer the pitfall of using distributed memory 
primitives:

• Distributed memory causes a secure scheme to 
exhibit 1st order leakage.

• Replaced with Block Memory 1st order leakage is 
not detectable.

Besides, our designs achieve higher throughput and 
require less randomness than original BMS scheme.

12



Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware 

Pascal Sasdrich, Oliver Mischke, Amir Moradi, and Tim Güneysu

Ruhr-Universität Bochum | Hardware Security Group 

26.03.2015

Side-Channel Protection by Randomizing 
Look-Up Tables on Reconfigurable Hardware
- Pitfalls of Memory Primitives -

Pascal Sasdrich, Oliver Mischke, 

Amir Moradi, and Tim Güneysu

COSADE 2015, Berlin, Germany

Thank you for your attention!
Any Questions?


	Slide 1: Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware - Pitfalls of Memory Primitives - 
	Slide 2: Outline
	Slide 3: Motivation
	Slide 4: Xilinx Memory Primitives
	Slide 5: Block Memory Content Scrambling
	Slide 6: Contribution
	Slide 7: Randomized Look-Up Tables
	Slide 8: Case Study
	Slide 9: S-Box Designs
	Slide 10: Evaluation Welch‘s T-Test
	Slide 11: Results
	Slide 12: Conclusion
	Slide 13: Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware - Pitfalls of Memory Primitives - 

