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WHAT ARE THRESHOLD IMPLEMENTATIONS?

Threshold Implementations are a countermeasure
against Side-Channel Analysis such as
Differential Power Attack.
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SIDE-CHANNEL ANALYSIS (SCA)

Adversary Models

e T

black-box gray-box white-box
non-invasive (semi-)invasive
active passive active passive
temperature or Side-Channel light or laser probing or photonic
voltage changes Analysis attacks inspection
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DIFFERENTIAL POWER ANALYSIS (DPA)

General: Measure multiple power traces of an
encryption with same key but different plaintexts.

Idea: Each signal transition will consume a different
amount of power.

— 0->0:low
— 0->1: high
— 1 - 0: high
- 1->1 low

The leakage of an encryption E, (m) will create a unique
fingerprint in the power consumption.

Statistical analysis will help to reveal the secret
encryption key k.

Analysis is simplified using divide-and-conquer
strategies (e.g. only observing S-box computation)
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COUNTERMEASURES AGAINST DIFFERENTIAL POWER ANALYSIS

1. Limitation of the key invocation
» Kkey distribution is a challenge

((;(@bbe’:qk)age resilie%algorithms (caddy.,)..)
. Giower ydrrranc\, .
2 Walig) — | S| " (edz)

» _decreasing the Signal-to-Noise Ratio (SNR)
» decrease signal (e.g. power equalization, logic styles)
» increase noise (e.g. shuffling, dummy executions)

3. Masking

X second-order DPA security
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THRESHOLD IMPLEMENTATION

Threshold Implementation:

» efficient countermeasure against (first-order) Side-Channel Analysis
» introduced in 2006 by Nikova et al.

» provides provable security even in a glitch circuit

Concept and properties:

»= uniform masking

= non-completeness &® ®

= correctness

= uniform sharing of function outputs
(each set of output pairs occurs with D @
same probability)

(al,bl,...) Sl (Cl,d1,...)

(Gg,bg,...) SQ E— (C2ad27"')

(as, b3, ...) Sz | ——— (c3,d3, ...)
Note: The number of input and output shares - a
depends on the function S. (a,b,...) — | § | — (¢,d,...)
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WHAT IS THE STORY OF THIS WORK?

» Side-Channel Analysis (SCA): attacks exploit information leakage of cryptographic devices

» Threshold Implementation (Tl): countermeasure based on Boolean masking and multi-party
computation

Problem: TI counteracts first-order attacks, but is vulnerable to higher-order attacks (using higher-
order statistical moments).

SOt
Different approaches to encounter this problem: 1 ¢ - |*
P OL PO 0
= Higher-order Threshold Implementations (HO-TI)
— might be restricted to univariate settings 7 @"Z’ = @’T’ %

— area overhead might be problematic

— finding uniform representations might be challenging
» Stay with 1st-order secure Tl and make higher-order attacks harder

— increase the noise

— reduce the signal

Our contribution: Increase the noise by introducing structured randomness into a 1st-order secure TI.
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NOISE ADDITION

Started a case study on PRESENT cipher:

= particularly investigated the PRESENT S-box vy = S(x)

» S-box has algebraic degree of 3, at minimum 4 shares

= alternatively, S-box can be decomposed into quadratic functions
» thanks to classification in

Bilgin, Nikova, Nikov, Rijmen, Tokareva, Vitkup: Threshold implementations of small S-
boxes. Cryptography and Communications 7(1): 3-33 (2015)

we know that PRESENT S-box S : A’ o Css 0 A can be decomposed in 7 different ways

(le o le), (Q293 o ngo), (Q294 o 9299), (Q299 o Q294), (ngg o Q299),
(Q300 © Q203), (D300 © D300)

= jtmeans,e.g.. S:A"0Qp0A 0Qp0A withthree affine functions (A, A’, A”)

ldea: Randomly change affine functions on-the-fly to introduce structured (random) noise.

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg Arbeitsgruppe fir
. Sichere Hardware



22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM 9

SOME NOTES ON AFFINE FUNCTIONS

Question: How can we implement, e.g. S:A” 0 Q120 A 0 Q150 A with random affine functions?

Solution: Uniform Tl of €12 is easily made by direct sharing

B

Question: How many of such 3-tuple affine functions exist (depending on the decomposition)?

Decomposition | # of (A, A’, A”)
Qip0 D12 147456
Qg4 © Qagog 229376
Qagg © D294 229376
Qagg © D299 200704

Note: We exclude those decompositions with @300, as its uniform Tl needs (at least) two stages.
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CHANGING THE AFFINE FUNCTIONS ON-THE-FLY

Implementation platform: Spartan-6 FPGA of SAKURA-G side-channel board.

Focused on decomposition S : A” 0 Q13 0 A’ 0 Q12 0 A with 147 456 different 3-tuple affine functions.

Hope: If we change the affine functions dynamically, this will introduce random noise to our
design and make second-order attacks harder (but it should not affect the third-order
vulnerability).

Challenge: How can we implement a circuit that allows us to select a random 3-tuple affine function of

the set of all possible (e.g. 147 456) affine functions?

L

H08
()

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg 1 Arbeitsgruppe far
: Sichere Hardware



22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

OPTION 1: SAVE ALL AFFINE TRANSFORMATIONS

Naive approach that precomputes and stores all affine transformations on the target device.

Single affine transformation: 4 x 4 binary matrix and 4-bit constant (20 bit)

All affine transformations: 3 X 147 456 x 20 bit = 8640 kbit
Problem: Spartan-6 LX75 FPGA (XC6SLX75) has only 3096 kbit dedicated block memory (BRAM).

Solution: Precompute and store only a fraction of all possible affine triples. For example, 16384
affine triples would occupy 60 BRAMSs.

Disadvantages:
= approach is extreme costly in terms of area (memory) requirements

= only covers a fraction of all possible affine functions which may reduce the security
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OPTION 2: SEARCH AFFINE TRANSFORMATIONS ON-THE-FLY

This approach just implements the searching algorithm to precompute the affine triples in hardware.

Advantages:
= pretty efficient in terms of area (memory) overhead

= covers all possible (e.g. 147 456) options to select an affine triple

Disadvantages:
» affine triples are not found with a constant rate (i.e. algorithm is not time-invariant)
= several affine triples are found sequentially and for a long time no new affine triple may be found

= |t may happen that multiple encryptions are performed with a fixed set of affine functions
(contradiction with our goal)
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OPTION 3: GENERATE AFFINE TRANSFORMATIONS ON-THE-FLY

This approach uses some interesting observations to reduce the number of affine triples to be stored.

Observations for S: A" 0 Q90 A’ 0 Qo0 A :

only 384 different input affine functions A

only 384 different output affine functions A”

384 x 384 = 147456 different combinations of A and A”

set of 384 affine functions is made of 48 linear functions combined with 8 different constants

ldea: Store only input and output affine functions and compute middle the affine function on-the-fly.

Approach:

compute the middle affine using the inverses of A and A”

48 % 2 X 16 bit storage for linear and inverse of A (same forA")
2 X 48 X 2 x 16 = 3 kbit in total, which fits into a single BRAM
Some extra logic to compute middle affine
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IMPLEMENTATION OF THE CASE STUDY

We implemented PRESENT-128 following a round-based fashion.
= pipeline with two stages, due to the middle register in the decomposed S-box

= 33 clock cycles latency with two full encryptions

We also provide a comparison between the options to realize the random affine selection:

stResource Uthimation econfig. Affine
Method Logicd Xﬂkfﬁ? < i Coverpge
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EVALUATION BY WELCH'S t-TEST

= measure power traces with digital oscilloscope IA AU i ‘

= determine distinguisher, e.g.: || THerry , | ,
— fix vs. random plaintext (non-specific t-test) |

= group traces depending on distinguisher

= compute sample mean for each point in time E

= compute sample variance for each point in time

» determine t-statistic for each point in time:

u(T € Gy) — u(T € Go)

5%(T € Gy) , 6%(T € Go)

|G1| |Gol 45 f'l.
where u denotes the sample mean and é » Q(WWWMJ

denotes the sample variance.

Fail/Pass Criteria: If there is any point in time
for which the t-statistic exceeds a threshold of
+ 4.5 the device under test fails.

More info: “Leakage Assessment Methodology - a clear roadmap for side-channel evaluations”, Cryptology ePrint Archive, Report 2015/207
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RESULTS

=  Sample trace for: : - )

: , : 45
— fix affine triples _
— random affine triples % -0
= first-order, second-order and © 400
third-order non-specific t-test; — 1

— fixed affine triples 481 ]

1
(50 million traces) X O‘f g P
— random affine triples 24l — .
(200 million traces) -50

= as expected no first-order
leakage detected (TI)

2nd order
t
(@]

’}" ')"' fwi‘g A ) “:er', wh""bf' |

il T T
e
CONCLUSION: = 48 T T
Changing the affine triples randomly g
co_uld avoid detectable second- and o —58 ‘
third-order leakage. o
m—-zﬂ.s - g
0 6.|25 Time [us] 18:75 25
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AFFINE EQUIVALENCE AND ITS APPLICATION TO
TIGHTENING THRESHOLD IMPLEMENTATIONS

pascal.sasdrich@rub.de

Thank you for your attention!
Any Questions?
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