RUHR-UNIVERSITAT BOCHUM hg1 SHA

AFFINE EQUIVALENCE AND ITS APPLICATION TO
TIGHTENING THRESHOLD IMPLEMENTATIONS

PASCAL SASDRICH, AMIR MORADI, TIM GUNEYSU

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

WHAT ARE THRESHOLD IMPLEMENTATIONS?

Threshold Implementations are a countermeasure
against Side-Channel Analysis such as
Differential Power Attack.

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg Arbeitsgruppe fir
. Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

SIDE-CHANNEL ANALYSIS (SCA)

Adversary Models

e T

black-box gray-box white-box
non-invasive (semi-)invasive
active passive active passive
temperature or Side-Channel light or laser probing or photonic
voltage changes Analysis attacks inspection
Time EM Power

/ N\

Simple Differential

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg 1 Arbeitsgruppe fur
. Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA

DIFFERENTIAL POWER ANALYSIS (DPA)

General: Measure multiple power traces of an
encryption with same key but different plaintexts.

Idea: Each signal transition will consume a different
amount of power.

— 0->0:low
— 0->1: high
— 1 - 0: high
- 1->1 low

The leakage of an encryption E, (m) will create a unique
fingerprint in the power consumption.

Statistical analysis will help to reveal the secret
encryption key k.

Analysis is simplified using divide-and-conquer
strategies (e.g. only observing S-box computation)

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP

RUHR-UNIVERSITAT BOCHUM

higher-order

first-order

uni-variate

multi-variate

h g 1 Arbeitsgruppe fiir
: Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

COUNTERMEASURES AGAINST DIFFERENTIAL POWER ANALYSIS

1. Limitation of the key invocation
» Kkey distribution is a challenge

((;(@bbe’:qk)age resilie%algorithms (caddy.,)..)
. Giower ydrrranc\, .
2 Walig) — | S| " (edz)

» _decreasing the Signal-to-Noise Ratio (SNR)
» decrease signal (e.g. power equalization, logic styles)
» increase noise (e.g. shuffling, dummy executions)

3. Masking

X second-order DPA security

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg 1 Arbeitsgruppe fur
. Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

THRESHOLD IMPLEMENTATION

Threshold Implementation:

» efficient countermeasure against (first-order) Side-Channel Analysis
» introduced in 2006 by Nikova et al.

» provides provable security even in a glitch circuit

Concept and properties:

»= uniform masking

= non-completeness &® ®

= correctness

= uniform sharing of function outputs
(each set of output pairs occurs with D @
same probability)

(al,bl,...) Sl (Cl,d1,...)

(Gg,bg,...) SQ E— (C2ad27"')

(as, b3, ...) Sz | ——— (c3,d3, ...)
Note: The number of input and output shares - a
depends on the function S. (a,b,...) — | § | — (¢,d,...)
RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg 1 Arbeitsgruppe fiir

: Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

WHAT IS THE STORY OF THIS WORK?

» Side-Channel Analysis (SCA): attacks exploit information leakage of cryptographic devices

» Threshold Implementation (Tl): countermeasure based on Boolean masking and multi-party
computation

Problem: TI counteracts first-order attacks, but is vulnerable to higher-order attacks (using higher-
order statistical moments).

SOt
Different approaches to encounter this problem: 1 ¢ - |*
P OL PO 0
= Higher-order Threshold Implementations (HO-TI)
— might be restricted to univariate settings 7 @"Z’ = @’T’ %

— area overhead might be problematic

— finding uniform representations might be challenging
» Stay with 1st-order secure Tl and make higher-order attacks harder

— increase the noise

— reduce the signal

Our contribution: Increase the noise by introducing structured randomness into a 1st-order secure TI.

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg Arbeitsgruppe fir
. Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

NOISE ADDITION

Started a case study on PRESENT cipher:

= particularly investigated the PRESENT S-box vy = S(x)

» S-box has algebraic degree of 3, at minimum 4 shares

= alternatively, S-box can be decomposed into quadratic functions
» thanks to classification in

Bilgin, Nikova, Nikov, Rijmen, Tokareva, Vitkup: Threshold implementations of small S-
boxes. Cryptography and Communications 7(1): 3-33 (2015)

we know that PRESENT S-box S : A’ o Css 0 A can be decomposed in 7 different ways

(le o le), (Q293 o ngo), (Q294 o 9299), (Q299 o Q294), (ngg o Q299),
(Q300 © Q203), (D300 © D300)

= jtmeans,e.g.. S:A"0Qp0A 0Qp0A withthree affine functions (A, A’, A”)

ldea: Randomly change affine functions on-the-fly to introduce structured (random) noise.

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg Arbeitsgruppe fir
. Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM 9

SOME NOTES ON AFFINE FUNCTIONS

Question: How can we implement, e.g. S:A” 0 Q120 A 0 Q150 A with random affine functions?

Solution: Uniform Tl of €12 is easily made by direct sharing

B

Question: How many of such 3-tuple affine functions exist (depending on the decomposition)?

Decomposition | # of (A, A’, A”)
Qip0 D12 147456
Qg4 © Qagog 229376
Qagg © D294 229376
Qagg © D299 200704

Note: We exclude those decompositions with @300, as its uniform Tl needs (at least) two stages.

h g 1 Arbeitsgruppe fiir

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP .
: Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM 10

CHANGING THE AFFINE FUNCTIONS ON-THE-FLY

Implementation platform: Spartan-6 FPGA of SAKURA-G side-channel board.

Focused on decomposition S : A” 0 Q13 0 A’ 0 Q12 0 A with 147 456 different 3-tuple affine functions.

Hope: If we change the affine functions dynamically, this will introduce random noise to our
design and make second-order attacks harder (but it should not affect the third-order
vulnerability).

Challenge: How can we implement a circuit that allows us to select a random 3-tuple affine function of

the set of all possible (e.g. 147 456) affine functions?

L

H08
()

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg 1 Arbeitsgruppe far
: Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

OPTION 1: SAVE ALL AFFINE TRANSFORMATIONS

Naive approach that precomputes and stores all affine transformations on the target device.

Single affine transformation: 4 x 4 binary matrix and 4-bit constant (20 bit)

All affine transformations: 3 X 147 456 x 20 bit = 8640 kbit
Problem: Spartan-6 LX75 FPGA (XC6SLX75) has only 3096 kbit dedicated block memory (BRAM).

Solution: Precompute and store only a fraction of all possible affine triples. For example, 16384
affine triples would occupy 60 BRAMSs.

Disadvantages:
= approach is extreme costly in terms of area (memory) requirements

= only covers a fraction of all possible affine functions which may reduce the security

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg Arbeitsgruppe fir
. Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

OPTION 2: SEARCH AFFINE TRANSFORMATIONS ON-THE-FLY

This approach just implements the searching algorithm to precompute the affine triples in hardware.

Advantages:
= pretty efficient in terms of area (memory) overhead

= covers all possible (e.g. 147 456) options to select an affine triple

Disadvantages:
» affine triples are not found with a constant rate (i.e. algorithm is not time-invariant)
= several affine triples are found sequentially and for a long time no new affine triple may be found

= |t may happen that multiple encryptions are performed with a fixed set of affine functions
(contradiction with our goal)

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg 1 Arbeitsgruppe fur
. Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

OPTION 3: GENERATE AFFINE TRANSFORMATIONS ON-THE-FLY

This approach uses some interesting observations to reduce the number of affine triples to be stored.

Observations for S: A" 0 Q90 A’ 0 Qo0 A :

only 384 different input affine functions A

only 384 different output affine functions A”

384 x 384 = 147456 different combinations of A and A”

set of 384 affine functions is made of 48 linear functions combined with 8 different constants

ldea: Store only input and output affine functions and compute middle the affine function on-the-fly.

Approach:

compute the middle affine using the inverses of A and A”

48 % 2 X 16 bit storage for linear and inverse of A (same forA")
2 X 48 X 2 x 16 = 3 kbit in total, which fits into a single BRAM
Some extra logic to compute middle affine

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg 1 Arbeitsgruppe fur

: Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

IMPLEMENTATION OF THE CASE STUDY

We implemented PRESENT-128 following a round-based fashion.
= pipeline with two stages, due to the middle register in the decomposed S-box

= 33 clock cycles latency with two full encryptions

We also provide a comparison between the options to realize the random affine selection:

stResource Uthimation econfig. Affine
Method Logicd Xﬂkfﬁ? < i Coverpge
\—FE-E,T‘ (F. M16) —ycte: (Percept)
.
- J ~ - ~ Shared
Optlon 1 261 = B C|pherté)&]
k¥ 1Option 9P sczﬂ | %@J b 100 random sefect
Optian 3 11 14Jo.p
= S
&_7 5 & ”
S E A >
3 [— A | A-1 —
.-
'% 3 T [Erar 1
g A
0w = L | A" An-1 | |
S 2 Qg |
w3
Key E A" A"
Expansion = @-
Permutation Permutation Permutation Affine Equivalent
Key Schedule | | Triple Generator

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg 1 A_"bEitSQFUpPe for
: Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM 15

EVALUATION BY WELCH'S t-TEST

= measure power traces with digital oscilloscope IA AU i ‘

= determine distinguisher, e.g.: || THerry , | ,
— fix vs. random plaintext (non-specific t-test) |

= group traces depending on distinguisher

= compute sample mean for each point in time E

= compute sample variance for each point in time

» determine t-statistic for each point in time:

u(T € Gy) — u(T € Go)

5%(T € Gy) , 6%(T € Go)

|G1| |Gol 45 f'l.
where u denotes the sample mean and é » Q(WWWMJ

denotes the sample variance.

Fail/Pass Criteria: If there is any point in time
for which the t-statistic exceeds a threshold of
+ 4.5 the device under test fails.

More info: “Leakage Assessment Methodology - a clear roadmap for side-channel evaluations”, Cryptology ePrint Archive, Report 2015/207

RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg 1 Arbeitsgruppe far
: Sichere Hardware

22N\D INT. CONFERENCE ON SELECTED AREAS IN CRYPTOGRAPHY, SACKVILLE, NB, CANADA RUHR-UNIVERSITAT BOCHUM

RESULTS

= Sample trace for: : -)

: , : 45
— fix affine triples _
— random affine triples % -0
= first-order, second-order and © 400
third-order non-specific t-test; — 1

— fixed affine triples 481]

1
(50 million traces) X O‘f g P
— random affine triples 24l — .
(200 million traces) -50

= as expected no first-order
leakage detected (TI)

2nd order
t
(@]

’}" ')"' fwi‘g A) “:er', wh""bf' |

il T T
e
CONCLUSION: = 48 T T
Changing the affine triples randomly g
co_uld avoid detectable second- and o —58 ‘
third-order leakage. o
m—-zﬂ.s - g
0 6.|25 Time [us] 18:75 25
RUHR-UNIVERSITAT BOCHUM | HARDWARE SECURITY GROUP hg 1 Arbeitsgruppe fiir

: Sichere Hardware

RUHR-UNIVERSITAT BOCHUM hg1 SHA

AFFINE EQUIVALENCE AND ITS APPLICATION TO
TIGHTENING THRESHOLD IMPLEMENTATIONS

pascal.sasdrich@rub.de

Thank you for your attention!
Any Questions?

	Slide 1: AFFINE EQUIVALENCE AND ITS APPLICATION TO TIGHTENING THRESHOLD IMPLEMENTATIONS
	Slide 2: WHAT ARE THRESHOLD IMPLEMENTATIONS?
	Slide 3: SIDE-CHANNEL ANALYSIS (SCA)
	Slide 4: DIFFERENTIAL POWER ANALYSIS (DPA)
	Slide 5: COUNTERMEASURES AGAINST DIFFERENTIAL POWER ANALYSIS
	Slide 6: THRESHOLD IMPLEMENTATION
	Slide 7: WHAT IS THE STORY OF THIS WORK?
	Slide 8: NOISE ADDITION
	Slide 9: SOME NOTES ON AFFINE FUNCTIONS
	Slide 10: CHANGING THE AFFINE FUNCTIONS ON-THE-FLY
	Slide 11: OPTION 1: SAVE ALL AFFINE TRANSFORMATIONS
	Slide 12: OPTION 2: SEARCH AFFINE TRANSFORMATIONS ON-THE-FLY
	Slide 13: OPTION 3: GENERATE AFFINE TRANSFORMATIONS ON-THE-FLY
	Slide 14: IMPLEMENTATION OF THE CASE STUDY
	Slide 15: EVALUATION BY WELCH‘S t-TEST
	Slide 16: RESULTS
	Slide 17: AFFINE EQUIVALENCE AND ITS APPLICATION TO TIGHTENING THRESHOLD IMPLEMENTATIONS

