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Our Contribution:

▪ we provide the currently smallest AES-128 implementation optimized for Xilinx FPGAs

▪ our implementation provides full encryption including on-the-fly key expansion

▪ the entire implementation occupies only 21 slices without any BRAM on a Spartan-6 device
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WHAT IS THE IDEA OF THIS WORK?

▪ AES-128: block cipher with 128-bit security level standardized in 2001 by NIST

▪ FPGA: (re-)programmable logic device popular for cryptographic implementations

▪ Xilinx: one of the leading manufactures for FPGAs, founded in 1984

Problem: Standardized symmetric encryption is often required for several purposes but has only 

minor importance and should not occupy much area in hardware such as FPGAs.

Question: Can we build an AES encryption core that is smaller than dedicated soft core 

implementations such as the PicoBlaze micro-processor for Xilinx FPGAs (26 slices / 1 BRAM)?
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XILINX FIELD-PROGRAMMABLE GATE ARRAYS (FPGA)

Let‘s take a short glance at Xilinx FPGAs: 

▪ organized in special cells such as 
Configurable Logic Blocks (CLB), memory 

(BRAM), IO,…

▪ CLBs contain 2 slices with 4 LUTs / 8 FF each

▪ in general three different kind of slices exist:

– Slice-X: basic logic functionality

– Slice-L: enhanced logic functionality

– Slice-M: additional memory features

For our work in particular the Slice-M were of 
special interest:

▪ all 4 LUTs could be combined and used as 4 x 

64 bit distributed memory

▪ different memory options such as 

– 32 x 8-bit (RAM32M), 

– 64 x 4-bit (RAM64M),

– and 256 x 1-bit (RAM256X1S)
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WHAT ARE THE SPECIAL IDEAS OF THIS WORK?

Problem: Find an optimal mapping of the AES algorithm to implement it as small as possible on 

current Xilinx FPGA technology.

Ideas:

▪ store intermediate state into distributed memory:

– AES has 128-bit internal state and most operations are byte-wise

– Xilinx FPGAs can store up to 32 x 8-bit values (256 bit) into a single slice

– storing this data in flip-flops would require 32 slices

▪ in terms of logic, the AES S-box is the most costly part:

– compare different S-box implementations and their size on FPGAs

– share S-box for key schedule and round computation

▪ MixColumns most challenging operation in particular for byte-serial implementations:

– only operation that does not work on single bytes but columns (4 bytes) of the state

– main operation is XOR  (besides multiplications with small constants in GF(28)

– following AddRoundKey operation can be merged with MixColumns computation
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Implementation:

▪ byte-serial round-based AES-128 encryption architecture including key schedule

▪ round function and key schedule are merged and share components (S-box and XOR-addition)

Performance:

▪ encryption circuit requires 15 slices, the remaining 6 slices are required for control logic

▪ encryption takes 1471 clock cycles (and has maximum frequency of 105 MHz)

▪ maximum throughput of 9.12 Mbps (0.43 Mbps / Slice)
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THE BASIC ENCRYPTION ARCHITECTURE | OVERVIEW
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The AES-128 key schedule mainly involves S-box computation, rotations, round constants additions 

and XOR-operations.
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THE BASIC ENCRYPTION ARCHITECTURE | KEY SCHEDULE

Design ideas:

▪ store round key in distributed memory, too

▪ use remaining 128-bits of key state 
register for round constants

▪ update round-key in a byte-wise fashion

▪ share S-box with round function

▪ use MC&KA component for round 
constant additions and XOR-operations

Key update has to be performed in fixed order due to data dependencies within the key schedule 

function.
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THE BASIC ENCRYPTION ARCHITECTURE | ROUND FUNCTION

▪ round function consists of 4 operations: SubBytes, ShiftRows, MixColumns and AddRoundKey

▪ prior to first round, an additional key addition is performed (key whitening)

▪ last round is different, it lacks the MixColumns operation

SubBytes: 

▪ implemented in a look-up table based fashion (8 slices)

ShiftRows:

▪ implemented by changing state register addresses (see next slide)

MixColumns and AddRoundKey:

▪ MC is a 32-bit operation that had to be byte-serialized
▪ implements an 8-bit register (using FFs) for 

intermediate results

▪ register is preceded by ALU providing 4 operation:
−

−

−

−

▪ AddRoundKey is merged using the add operation
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Control logic implements counters and state machine to 

perform a full AES encryption including full key expansion.

Counters:

▪ 4-bit counter for counting the rounds (2 LUTs / 0.5 slices)

▪ 4-bit counter for tracking current byte (2 LUTs / 0.5 slices)

▪ 2-bit counter for tracking input byte of MixColumns
(1 LUT / 0.25 slices)

State Machine:

▪ calculation of next state transition (1.5 slices)

▪ Generation of signals to control encryption circuit 
(microcode-like approach, 1.5 slices)

In addition, the addressing signals for the 

state register have to be generated in order to

consider the ShiftRows operation (1.75 slices).
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THE BASIC ENCRYPTION ARCHITECTURE | CONTROL LOGIC
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IMPLEMENTATION RESULTS AND COMPARISON

▪ compared to other designs our work only provides moderate performance

▪ but our main focus laid on finding the smallest implementation (at cost of higher run-time)

▪ even dedicated lightweight ciphers such as Simon cannot be implemented much smaller
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▪ Side-Channel Protection:

– our design nigh on inherently supports shuffling

– masking using randomized look-up tables (but mask update is challenging)

▪ use AES as Pseudo Random Number Generator (PRNG)

▪ wrap encryption engine with different Modes of Operation:

– counter mode to provide not only encryption but also decryption

– ...

▪ practical application and implementation, e.g. for IP protection and protocols
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FUTURE WORK AND DIRECTIONS?
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We provide an ultra-lightweight AES-128 implementation 

designed for modern Xilinx FPGAs and even competitive to 

lightweight ciphers such as Simon.
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WHAT IS THE CONCLUSION OF THIS WORK?



SEPTEMBER 17, 20154TH WORKSHOP ON SECURE HARDWARE AND SECURITY EVALUATION, SAINT-MALO, FRANCE

pascal.sasdrich@rub.de

Thank you for your attention!

Any questions?
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