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INTRODUCTION
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WHY DO WE NEED HIGH-SPEED ASYMMETRIC CRYPTOGRAPHY?

▪ Car2Car and Car2Environment communication requires exchange of 

messages

▪ messages have to be authenticated and protected against 

manipulation using asymmetric cryptography (signatures)

▪ time-critical procedure that requires high-speed processing of 

thousands of signatures per second

▪ high-speed hardware-based router for Tor network

▪ establishes thousands of new connections per second

▪ communication is protected against surveillance and analysis

▪ asymmetric cryptography is used to establish symmetric keys 

between communication partners (key agreement)

CAR2CAR COMMUNICATION

HARDWARE ROUTER FOR TOR NETWORK

MODERN SYSTEMS REQUIRE HIGH-SPEED CRYPTOGRAPHIC 

IMPLEMENTATIONS PERFORMING THOUSANDS OF OPERATIONS PER SECOND.

http://www.extremetech.com/

http://www.digilent.com/
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I. Choose cryptographic scheme:

• RSA

• ElGamal

• Elliptic Curve Cryptography

• Code-based/Lattice-based Cryptography

• …

II. Choose target platform:

• CPU

• Microprocessor

• Field-Programmable Gate Array (FPGA)

• Application-Specific Integrated Circuit (ASIC)

• …

III. Implement and optimize signature scheme for chosen platform

IV. Include protection against (implementation) attacks

• Timing Attacks

• Power / EM Analysis (Simple / Differential)

• Fault Injection

• …

4

HOW DO WE DESIGN CRYPTOGRAPHIC IMPLEMENTATIONS?
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This work: 

Implementing Curve25519 for Side-Channel-Protected Elliptic Curve 

Cryptography on FPGAs.

CHALLENGE: Curve25519 is a state-of-the-art elliptic-curve Diffie-Hellman function that was chosen 

and designed for fast software implementations.

OUR MAIN CONTRIBUTIONS:

1. We present the first implementation of Curve25519 on (reconfigurable) hardware.

2. Our implementation provides a high-speed scalar multiplication function using Curve25519.

3. It includes inherent protection against Timing and Simple Power Analysis (SPA) attacks.

4. It provides additional protection against Differential Power Analysis (DPA) attacks.

5

OUR CONTRIBUTION
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I. INTRODUCTION

II. CURVE25519

III. FIELD-PROGRAMMABLE GATE ARRAYS (FPGA)

IV. CURVE25519 ON RECONFIGURABLE HARDWARE

V. ADDING SIDE-CHANNEL PROTECTION

VI. RESULTS AND COMPARISON

VII. CONCLUSION

6

AGENDA OF THIS TALK
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CURVE25519
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▪ Curve25519:

• state-of-the-art elliptic curve over prime fields with ~128-bit level of security

• special prime structure (Pseudo Mersenne prime): 𝒑 = 𝟐𝟐𝟓𝟓 − 𝟏𝟗

• namesake for the elliptic curve function

• allows efficient modular reduction using multiplication (with small constant 𝑐 = 19)

• recently proposed and considered in RFC 7748 (along with Curve448) for next generation of TLS

▪ X25519 (Bernstein 2006):

• Elliptic Curve Diffie-Hellman scheme

• Montgomery curve:  𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥 (𝑚𝑜𝑑 𝑝)

• public keys and shared secrets are points on the curve

▪ Ed25519 (Bernstein, Duif, Lange, Schwabe, and Yang, 2011):

• Elliptic Curve Signature scheme

• Twisted Edwards curve:  −𝑥2 + 𝑦2= 1 −
121665

121666
𝑥2𝑦2 (𝑚𝑜𝑑 𝑝)

• public keys and (part of) the signatures are points on the curve

8

THE ELLIPTIC CURVE CURVE25519
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X25519 is ECDH key agreement scheme which establishes a shared secret between Alice and Bob.
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THE X25519 ECDH SCHEME

PROPERTIES:

▪ Alice and Bob both have 255-bit public and private keys

▪ both derive their public key by a scalar multiplication using their private key and the public base point  𝑥 = 9

▪ shared secrets are derived by a second scalar multiplication using public and private keys

▪ public keys and shared secrets consist only of 𝑋 instead of (𝑋, 𝑌)

Alice Bobpublic base point

 x = 9

secret key bsecret key a

Curve25519(a, 9) Curve25519(b, 9)

public key pbpublic key pa

Curve25519(a, pb) Curve25519(b, pa)

shared secret sshared secret s
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FIELD-PROGRAMMABLE GATE 

ARRAYS (FPGA)
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Modern FPGAs are highly regular 

arrays of freely programmable logic 
blocks:

▪ General Purpose Logic

• Configurable Logic (CLB)

• Slices (Slice-X, Slice-L, Slice-M)

• Look-Up Tables (LUTs)

• Flip-Flops (FFs)

• …

▪ Routing

• Programmable Switch Matrix

• Programmable Interconnections

▪ Special Purpose Logic

• Digital Signal Processors (DSP)

• (True Dual-Port) Block Memory (BRAM)

• I/O blocks

• …

11

SCHEMATIC LAYOUT OF MODERN FPGAS
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Modern Xilinx FPGAs (7-Series) provide up to 

three different types of slices for various use-
cases:

▪ SLICE-X:

• basic slice architecture

• 4 independent Look-Up Tables (LUT), each as:

− one 6-to-1 Boolean function

− two 5-to-2 Boolean functions (shared inputs)

• 8 Flip-Flops (for clock synchronization of outputs)

▪ SLICE-L

• arithmetic and logic slice architecture

• additional arithmetic for fast carry-handling

• wide multiplexers to combine LUTs as 7-to1 or 8-to-1 

Boolean function

▪ SLICE-M

• arithmetic, logic and memory slice architecture

• allows to use LUT configuration memory either as:

− 256-bit distributed memory (RAM)

− 128-bit shift registers (SR)

12

GENERAL PURPOSE LOGIC
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SELECTED SPECIAL PURPOSE LOGIC

DIGITAL SIGNAL PROCESSOR (DSP)

BLOCK MEMORY (BRAM)

▪ dedicated, full-custom, low-power digital signal processor

▪ 25 × 18 signed multiplier  (with dynamic bypass)

▪ 48-bit accumulator

▪ optional 24-bit pre-adder

▪ multiple register stages for high-speed, pipelined operation

▪ efficient, low-power data storage, e.g. for large look-up tables

▪ each BRAM can store up to 36 Kbits of data

▪ configurable data input and output width

▪ true-dual port access capabilities (with independent clocks)

▪ additional Error Correction Code capabilities
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CURVE25519 ON 

RECONFIGURABLE HARDWARE
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IMPLEMENTING PRIME FIELD ELLIPTIC CURVE CRYPTOGRAPHY

SCALAR MULTIPLICATION:

variable scalar-point multiplication as sequence of point additions and doublings

GROUP ARITHMETIC:

point addition and doubling using finite field arithmetic and curve specific formulas

FINITE FIELD ARITHMETIC:

addition, subtraction, multiplication, inversion, reduction in GF(p)
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IMPLEMENTING PRIME FIELD ELLIPTIC CURVE CRYPTOGRAPHY

SCALAR MULTIPLICATION:

variable scalar-point multiplication as sequence of point additions and doublings

GROUP ARITHMETIC:

point addition and doubling using finite field arithmetic and addition/doubling formulas

FINITE FIELD ARITHMETIC:

addition, subtraction, multiplication, inversion, reduction in GF(p)
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THE MODULAR ADDITION AND SUBTRACTION UNIT

MODULAR ADDITION/SUBTRACTION: 

𝑪 = 𝑨 ± 𝑩 (𝒎𝒐𝒅 𝑷)

▪ includes reduction modulo p

▪ simple and elegant design in hardware

▪ always performs addition/subtraction in 

combination with reduction

▪ serial computation using 2 DSP units

– 1st DSP performs main operation

– 2nd DSP performs reduction

▪ output selection depending on final 

carry/borrow

▪ 34-bit operands A, B, P and 8 steps for 

final result

+ / -

- / +

MUX

A B P

C

Borrow / 

Carry
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PSEUDO MERSENNE PRIME:

𝐴 𝑝𝑟𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 𝑝 = 2𝑛 ± 𝑎, 0 < 𝑎 < 2
𝑛
2, 𝑖𝑠 𝑎 𝑃𝑠𝑒𝑢𝑑𝑜 𝑀𝑒𝑟𝑠𝑒𝑛𝑛𝑒 𝑃𝑟𝑖𝑚𝑒.

MODULO REDUCTION WITH PSEUDO MERSENNE PRIMES:

I. in general, it holds: 𝟐𝒏 ≡ ±𝒂 (𝒎𝒐𝒅 𝒑)

II. further:  𝑨 × 𝑩 = 𝑪 =  𝑪𝑯 × 𝟐𝒏 + 𝑪𝑳

III. reduction results in: 𝑪 ≡ 𝑪𝑯 × 𝟐𝒏 + 𝑪𝑳 ≡ 𝑪𝑳 ± 𝑪𝑯 × 𝒂 𝒎𝒐𝒅 𝒑

OBSERVATIONS:

▪ it might be necessary to apply III. multiple times

▪ reduction uses to multiplication with (small) constant and addition

▪ can be (partially) interleaved with multiplication

I will present a small example in order to illustrate the basic concept…
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THE MODULAR REDUCTION SCHEME (I)
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THE MODULAR REDUCTION SCHEME (II)

a0b0

a1b0

a0b1

a2b0
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1734516885102119136

Unoptimized Version

b3 b2 b1 b0a0 a2 a1 a0 X a0 a2 a1 a0 b3 b2 b1 b0

a0b0

a1b0

a0b1

a2b0

a1b1

a0b2

a3b0

a2b1

a1b2

a0b3

19a3b2
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19a1b3
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a0b1

19a3b2
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a2b0

a1b1
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S3 S2 S1 S0
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19S3hS3h S3l
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THE MODULAR MULTIPLICATION UNIT

DSP   
...

...

x

+
x

15-to-1 Multiplexer

a14 ... ... b0a1 b14

x

+

b1

x

+

a0

DSP -
x

∑ 

... p0p14 p1

(19)10

2-to-1 Multiplexer

c14 ... c1 c0

17

1717

17 17

17

(19)10

MODULAR MULTIPLICATION/SQUARING: 

𝑪 = 𝑨 × 𝑩 (𝒎𝒐𝒅 𝑷)

▪ largest and most sophisticated component of 

final ECC architecture

▪ performs multiplication including reduction

▪ benefits from fact: 255 = 15 × 17

▪ DSPs allow 25 × 18 signed or 24 ×
17 unsigned multiplications

▪ uses 18 DSP units in total:

– 15 DSPs for partial products

– 1 DSP for pre-reduction

– 2 DSP for post-reduction

▪ separated and arranged in 2 stages (allows 

pipelining to increase throughput):

– 1st stage: partial products

– 2nd stage: post-reduction
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MODULAR INVERSION:

𝒂𝒑−𝟐 ≡ 𝒂−𝟏 (𝒎𝒐𝒅 𝒑)

▪ computes affine point from projective point: 𝑋𝐴  = 𝑋𝑃 × 𝑍𝑃
2255−21

▪ performed only once per scalar multiplication in order to transform final result

▪ implemented using sequence of modular multiplications and squarings

▪ no additional hardware unit required

▪ requires 265 multiplications/squaring and 14630 cycles

ALTERNATIVE:

▪ modular inversion can be implemented as dedicated inversion unit (using Extended Euclidean Algorithm)

▪ requires additional hardware unit but is faster than FLT

▪ requires only 1667 cycles but about 2800 FF/3600 LUTs (~ single Curve25519 core)

▪ additional cost can be abated using resource sharing (e.g. for multi -core architectures) 

21

FERMAT‘S LITTLE THEOREM
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Modular 
Multiplication/

Squaring/
Inversion

Modular
Addition/

Subtraction

22

OVERALL ARCHITECTURE

IMPLEMENTING FINITE FIELD ARITHMETIC FUNCTIONALITY:

▪ independent units for modular squaring/multiplication and addition/subtraction

▪ allows parallel operation of addition and multiplication unit
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IMPLEMENTING PRIME FIELD ELLIPTIC CURVE CRYPTOGRAPHY

SCALAR MULTIPLICATION:

Variable scalar-point multiplication as sequence of point additions and doublings

GROUP ARITHMETIC:

point addition and doubling using finite field arithmetic and curve specific formulas

FINITE FIELD ARITHMETIC:

addition, subtraction, multiplication, inversion, reduction in GF(p)
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MONTGOMERY LADDER:

▪ time-invariant, combined double-and-add algorithm

▪ order of inputs depending on current bit of secret scalar

▪ operates on projective coordinates (𝑥/𝑧)

▪ implemented as sequence of additions, subtraction, 

squarings and multiplications

▪ (almost) each squaring/multiplication is followed by an 

addition/subtraction

POINT DOUBLING:

𝒙𝟐𝑸 = 𝒙 − 𝒛 𝟐 𝒙 + 𝒛 𝟐

𝒛𝟐𝑸 = 𝟒𝒙𝒛(𝒙𝟐 + 𝑨𝒙𝒛 + 𝒛𝟐)

POINT ADDITION:

𝒙𝑸+𝑸′ = 𝟒(𝒙𝒙′ − 𝒛𝒛′)

𝒛𝑸+𝑸′ = 𝟒 𝒙𝒛′ − 𝒛𝒙′ 𝒙𝟏

24

THE MONTGOMERY LADDER

+ - + -

x x x x

+ - + -

x x x

+

x x

XQ ZQ XQ‘ ZQ‘

XQ-Q‘

(A – 2)
4

ZQ+Q‘X2Q Z2Q XQ+Q‘
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Dual Port RAM 1

Dual Port RAM 2
Modular 

Multiplication/
Squaring/
Inversion

Modular
Addition/

Subtraction

Arithmetic Controller

Input Output

CTL CTL

34

34

3434

3434

34

34
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OVERALL ARCHITECTURE

IMPLEMENTING GROUP ARITHMETIC FUNCTIONALITY:

▪ circular operation flow (every multiplication followed by addition)

▪ Arithmetic Controller implements sequence of Montgomery ladder and inversion (Fermat’s Little Theorem)

▪ Arithmetic Controller controls order of inputs for Montgomery ladder (depending on secret scalar)
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IMPLEMENTING PRIME FIELD ELLIPTIC CURVE CRYPTOGRAPHY

GROUP ARITHMETIC:

point addition and doubling using finite field arithmetic and curve specific formulas

FINITE FIELD ARITHMETIC:

addition, subtraction, multiplication, inversion, reduction in GF(p)

SCALAR MULTIPLICATION:

variable scalar-point multiplication as sequence of point additions and doublings
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Dual Port RAM 1

Dual Port RAM 2
Modular 
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Squaring/
Inversion

Modular
Addition/
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Arithmetic Controller Core Controller

Input Output
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Command
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OVERALL ARCHITECTURE

IMPLEMENTING SCALAR MULTIPLICATION FUNCTIONALITY:

▪ Core Controller manages scalar multiplication by calling Montgomery ladder and final inversion accordingly

▪ manages external communication using a command and response based protocol 
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ADDING SIDE-CHANNEL 

PROTECTION
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CLASSIFICATION OF ADVERSARY MODELS

gray-box white-boxblack-box

Adversary Models

non-invasive (semi-)invasive

active passive active passive

Side-Channel 

Analysis

Power

Simple Differential

EMTime

temperature or 

voltage changes

light or laser 

attacks

probing or photonic 

inspection
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TIMING ANALYSIS:

▪ exploits dependencies of secret data and execution time

▪ ECC is vulnerable if not implemented carefully:

▪ implementing constant time algorithms prevents timing analysis

SIMPLE POWER ANALYSIS (SPA):

▪ measurement and inspection of instantaneous power consumption of a device

▪ attacker tries to reveal patterns depending on secret scalar (e.g., point addition or point 

multiplication)

▪ requires only a few power traces but deep knowledge about implementation

▪ SPA countermeasures aim to unify patterns (e.g., always double and add points)

DIFFERENTIAL POWER ANALYSIS (DPA):

▪ exploits data or key dependencies in the power consumption

▪ predicts power consumption and compares to actual consumption

▪ uses statistical test rather than visual inspection

▪ requires larger amounts of power traces

▪ many different ways to implement countermeasures

30

CONSIDERED SIDE-CHANNEL ATTACKS
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HIDING:

Hide side-channel leakage within (random) noise (Signal-to-Noise Ratio).

▪ decrease leakage signal (power equalization,…)

▪ increase random noise (dummy operations, shuffling,…)

31

SIDE-CHANNEL COUNTERMEASURES AGAINST DPA

MASKING / BLINDING:

Randomly mask or blind intermediate values and possible leakage.

▪ requires additional source for randomness

▪ may require changes in algorithmic flow and implementation (components)

▪ usually applied on inputs

RE-KEYING:

Change keys frequently to mitigate key extraction.

▪ key distribution and synchronization is difficult

▪ usually comes with significant performance drop

▪ leakage-resilient algorithms
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GENERAL IDEA: Re-compute secret scalar in a way that intermediate results differ but final result is still correct.

OBSERVATION: Given the group order #𝐸, computing #𝐸 × 𝑃 = 𝑂 results in the point at infinity.

RANDOMIZATION OF SECRET SCALAR:

▪ instead of using the original scalar 𝑘 we compute a new scalar 𝑘′  =  𝑘 + 𝑟 × #𝐸

▪ correctness is given by:

𝑘′ × 𝑃 = (𝑘 + 𝑟 × #𝐸) × 𝑃 = 𝑘 × 𝑃 + 𝑟 × 𝑂 = 𝑘 × 𝑃

▪ requires a random value r (should be ~128 bit – we only implemented 24 bit for proof of concept)

▪ increases the bit size of scalar and hence runtime of scalar multiplication

COUNTERMEASURE:

▪ even using same scalars as input will yield in different intermediate values

▪ power consumption and side-channel leakage is randomized to prevent (or hamper) DPA attacks

32

SCALAR BLINDING (MASKING)
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GENERAL IDEA: Re-compute public point P in a way that intermediate results differ but final result is still correct.

OBSERVATION: Points (𝑋, 𝑌) are represented by projective coordinates (𝑋/𝑍, 𝑍) and initially: 𝑍 = 1.

RANDOMIZATION OF PUBLIC POINT:

▪ introducing projective coordinates relaxes computations and introduces higher degrees of freedom

▪ instead of choosing Z = 1 we choose a random 255-bit value Z = λ

▪ updating 𝑃 = (𝜆𝑋, 𝑍) ensures correctness of final result (𝑌 coordinate is omitted during operation)

▪ countermeasure requires 255-bit randomness and an additional modular multiplication (prior to scalar 

multiplication)

COUNTERMEASURE:

▪ even using same points as input will yield in different intermediate values

▪ power consumption and side-channel leakage is randomized to prevent (or hamper) DPA attacks
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RANDOMIZED PROJECTIVE COORDINATES (MASKING)
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MEMORY ADDRESS SCRAMBLING (HIDING)

OBSERVATION: Montgomery ladder prevents timing and SPA attacks but still has dependencies to the secret scalar.

RANDOMIZATION OF BRAM MEMORY ADDRESSES:

▪ BRAM addressing is dependent on the secret scalar

– if current scalar bit is 0: first address will be 𝑄, second will be 𝑄′

– if current scalar bit is 1: first address will be 𝑄′, second will be 𝑄

▪ addresses should be scrambled after every scalar multiplication in order to hide dependencies

▪ scrambling of 6-bit addresses can be realized using a LFSR and requires 6 bit of randomness

COUNTERMEASURE:

▪ BRAM addresses for 𝑄 and 𝑄′ will be different after every execution 

▪ our approach still might have a limited complexity but practically hardens design against DPA attacks
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RESULTS AND COMPARISON
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SINGLE-CORE ARCHITECTURE

UNPROTECTED VS. PROTECTED:

▪ only slight increase of area and hardware resources (192 FF, 79 LUT, 2 DSP)

▪ increased latency due to larger scalar size (total increase of 24-bit due to randomization)

▪ small optimization in dataflow of inversion/LFT (258 clock cycles)
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IMPLEMENTATION AND PERFORMANCE RESULTS
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SIDE-CHANNEL COUNTERMEASURES

▪ only uses small random 𝑟
with 24 bits 

▪ might be problematic 

in practice

▪ can be increased 
easily at cost of 

additional latency

▪ requires two additional 

DSPs and |𝑟| additional 
Montgomery ladder calls

▪ requires 255-bit random 

and small modification in 
arithmetic controller

▪ coordinate multiplication 
can be realized using finite 

field multiplication

SCALAR BLINDING: RANDOM COORDINATES:

▪ requires 6-bit random seed 

for LFSR

▪ executed prior to every 

scalar multiplication

ADDRESS SCRAMBLING:
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A fair comparison to hardware implementations of Curve25519 is hardly possible, but related work:

NIST P-256 (Güneysu and Paar, 2008):

▪ standardized elliptic curve (NIST) offering same security level as Curve25519

▪ uses Generalized Mersenne Prime for fast reduction using additions/subtractions

▪ 20% slower using 45% more hardware resources (logic and DSPs)

𝐅𝐎𝐔𝐑ℚ (Järvinen et al., 2016):

▪ recently proposed high-performance elliptic curve with 128-bit of security

▪ uses four dimensional decomposition on a ℚ-curve

▪ arithmetic is performed using Mersenne prime 𝑝 = 2127 − 1

▪ 265% faster using 45% more logic and 20% more DSP resources

CURVE448 (Sasdrich and Güneysu, 2016):

▪ Curve448: second candidate of RFC7748 (along with Curve25519) offering 224-bit of security

▪ 85% slower using only 45% more DSPs (but same logic resources)
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COMPARISON TO OTHER WORK
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CONCLUSION
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HIGH-PERFORMANCE ASYMMETRIC CRYPTOGRAPHY…

…allows modern systems and devices to process thousands of signatures per second.

FIELD-PROGRAMMABLE GATE ARRAYS…

…provide many dedicated logic resources that allow efficient cryptographic implementations.

CURVE25519…

… was originally design for fast software implementations but even supports fast hardware 

implementations (on FPGAs).

HIGHLY OPTIMIZED FINITE FIELD ARITHMETIC… 

…is the foundation of high-performance ECC architectures and requires thorough engineering.

SIDE-CHANNEL ANALYSIS ATTACKS… 

…are a big threat to modern embedded and constrained devices, but:

▪ carefully chosen ECC parameters inherently provide protection against Timing and SPA attacks

▪ Masking and Hiding countermeasures can be implemented easily atop of ECC architectures
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WHAT YOU SHOULD TAKE HOME OF THIS TALK…
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IMPLEMENTING CURVE25519 FOR SIDE-CHANNEL-

PROTECTED ELLIPTIC CURVE CRYPTOGRAPHY

pascal.sasdrich@rub.de

Thank you for your attention!

Any questions?
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BACKUP SLIDES
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HARDWARE DESCRIPTION LANGUAGE:

Formal description of the hardware design using a HDL, e.g., Verilog or VHDL.
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XILINX FPGA DESIGN FLOW 

HDL

SYN

MAP

PAR

BIT

DESIGN SYNTHESIS:

Conversion of the HDL description into a netlist, i.e., a formally written digital circuit schematic.

MAP DESIGN ELEMENTS TO DEVICE RESOURCES:

Mapping of the netlist onto particular device internal structures and elements.

PLACE AND ROUTE DESIGN RESOURCES:

Layout and allocate FPGA resources (logic and routing) in order to implement hardware design.

GENERATE BITSTREAM FILE:

Generate bitstream file that contains final FPGA configuration and which can be loaded to the device.
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HIGH-PERFORMANCE            

MULTI-CORE ARCHITECTURE
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Core 1 Core 2 ... Core 10 Core 11

11-to-1 Multiplexer

Multicore Controller

Inverter

Input

Output

Command

Response
Data Data Data Data DataEN EN EN EN EN
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MULTI-CORE ARCHITECTURE (I)
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MULTI-CORE ARCHITECTURE (II)
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COMPARISON TO OTHER WORK
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