^{hg} EMSEC

RUB

HIDING HIGHER-ORDER SIDE-CHANNEL LEAKAGE

- RANDOMIZING THRESHOLD IMPLEMENTATIONS IN RECONFIGURABLE HARDWARE -

PASCAL SASDRICH, AMIR MORADI, TIM GÜNEYSU

FINAL CONFERENCE ON TRUDEVICE 2016, BARCELONA, SPAIN

NOVEMBER 15, 2016

INTRODUCTION | SIDE-CHANNEL ANALYSIS (SCA)

ATTACKER MODEL

timing, power, EM, …

COUNTERMEASURES

masking

re-keying

INTRODUCTION | THRESHOLD IMPLEMENTATION

THRESHOLD IMPLEMENTATION:

- efficient <u>countermeasure in hardware</u> against (first-order) Side-Channel Analysis
- introduced in 2006 by Nikova et al. [1]
- provides provable security even in a glitch circuit

CONCEPT AND PROPERTIES:

- uniform masking
- non-completeness
- correctness
- uniform sharing of function outputs (each set of output pairs occurs with same probability)

NOTE: The number of input and output shares depends on the function *S*.

[1] S. Nikova, C. Rechberger, V. Rijmen, "Threshold Implementations Against Side-Channel Attacks and Glitches", ICICS, 2006

RUHR-UNIVERSITÄT BOCHUM | CHAIR FOR EMBEDDED SECURITY

INTRODUCTION | MOTIVATION

BASICS:

- Side-Channel Analysis (SCA): attacks exploit information leakage of cryptographic devices
- Threshold Implementation (TI): countermeasure based on Boolean masking and multi-party computation

PROBLEM:

TI only counteracts first-order attacks, but is vulnerable to higher-order attacks (using higher-order statistical moments).

DIFFERENT APPROACHES TO ENCOUNTER THIS PROBLEM:

- Higher-order Threshold Implementations (HO-TI) [2]
 - might be restricted to univariate settings
 - area overhead <u>might be</u> problematic
 - finding uniform representations *might be* challenging
- Stay with 1st-order secure TI and make *higher-order attack*s harder
 - reduce the signal (e.g., power equalization schemes, logic styles) [3]
 - increase the noise (e.g., shuffling) [4]

OUR CONTRIBUTION: General methodology (*dynamic hardware modifications*) to increase noise.

[2] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, "Higher-Order Threshold Implementations". ASIACRYPT 2014

[3] A. Moradi, A. Wild, "Assessment of Hiding the Higher-Order Leakages in Hardware – What are the Achievements versus Overheads?". CHES 2015

[4] P. Sasdrich, A. Moradi, T. Güneysu, "Affine Equivalence and its Application to Tightening Threshold Implementations". SAC 2015

RUHR-UNIVERSITÄT BOCHUM | CHAIR FOR EMBEDDED SECURITY

CONCEPT | DYNAMIC HARDWARE MODIFICATION

THRESHOLD IMPLEMENTATION OF PRESENT:

- S-box decomposition into two quadratic functions g and f [5]
- minimal number of shares (m = n = 3)
- register stages to separate functions
- linear permutation applied individually

RANDOM ENCODING:

- TI as network of look-up tables
- each table updates 4 bit of internal state
- use White-Box Cryptography [6] concepts:
 - apply random non-linear 4-bit encoding to every table output
 - apply inverse encoding to every adjacent table input (preserves correctness)

$E'_K = \underbrace{(f^{r+1})^{-1} \circ E^r_{k_r} \circ f^r}_{k_r} \circ \cdots \circ$	$(f^3)^{-1} \circ E^2_{k_2} \circ f^2$	$(f^2)^{-1} \circ E^1_{k_1} \circ f^1$
table(s)	table(s)	table(s)
$= (f^{r+1})^{-1} \circ E^r_{k_r} \circ \dots \circ E^2_{k_2} \circ$	$\circ E^1_{k_1} \circ f^1 = (f^{r+1})$	$(-1)^{-1} \circ E_K \circ f^1,$

DYNAMIC UPDATE:

- find new random non-linear encodings using element swapping algorithm
- update look-up tables using BRAM scrambling

[5] A. Poschmann, A. Moradi, K. Khoo, C. Lim, H. Wang, S. Ling, "Side-Channel Resistant Crypto for Less than 2300 GE". Journal of Cryptology, 2011

[6] S. Chow, P. A. Eisen, H. Johnson, P. C. van Oorschot, "White-Box Cryptography and an AES Implementation". SAC, 2002

RUHR-UNIVERSITÄT BOCHUM | CHAIR FOR EMBEDDED SECURITY

CASE STUDY | PRESENT (QUARTER ROUND)

PRACTICAL FPGA IMPLEMENTATION:

- round-based architecture using look-up tables for TI S-box and permutation layer
- 4 quarter rounds in parallel, each using 48 BRAMs (as depicted)
- each BRAM can hold up to 32 different tables
 - store look-up tables for every round (31 rounds)
 - · update tables using BRAM scrambling and remaining (empty) table entry
 - · track context of active table positions

RUHR-UNIVERSITÄT BOCHUM | CHAIR FOR EMBEDDED SECURITY

CASE STUDY | IMPLEMENTATION RESULTS

module/	resource utilization					
component	logic	memory			area	
	(LUT)	(FF)	(DistRAM)	(BRAM)	(Slices)	
control logic	11	24	0	0	13	
round function	96	0	0	192	87	
g-layer	0	0	0	48	0	
f-layer	0	0	0	48	0	
p_1 -layer	0	0	0	48	0	
p_2 -layer	0	0	0	48	0	
reconfiguration	5081	3222	1952	0	2373	
context engine	54	44	32	0	18	
encoding engine	4800	2880	1920	0	2258	
randomness generator	136	256	0	0	40	
Total	5188	3246	1952	192	2473	

PRACTICAL IMPLEMENTATION:

- post-place-and-route implementation on a Kintex-7 of SAKURA-X board
- basic architecture mainly implemented in Block RAM
- general purpose logic only required in order to perform dynamic hardware modification

PRACTICAL EVALUATION | NON-SPECIFIC T-TEST

EVALUATION BASED ON WELCH'S t-TEST

- measure (many) power traces with digital oscilloscope
- group traces depending on fix or randomly chosen plaintext (non-specific t-test)
- compute sample mean for each point in time
- compute sample variance for each point in time
- determine t-statistic for each point in time, according to:

$$t = \frac{\mu(T \in G_1) - \mu(T \in G_0)}{\sqrt{\frac{\delta^2(T \in G_1)}{|G_1|} + \frac{\delta^2(T \in G_0)}{|G_0|}}}$$

where μ denotes the sample mean and δ denotes the sample variance.

Fail/Pass Criteria: If there is any point in time for which the t-statistic exceeds a threshold of ± 4.5 the device under test fails.

More info: "Leakage Assessment Methodology - a clear roadmap for side-channel evaluations", CHES 2015, ePrint: 2015/207

RUHR-UNIVERSITÄT BOCHUM | CHAIR FOR EMBEDDED SECURITY

PRACTICAL EVALUATION | SETUP

MEASUREMENT SETUP

- SAKURA-X Side-Channel Evaluation Board
- designs running @ 24 MHz
- power measurements using digital oscilloscope @ 500 MS/s

EVALUATION SETUP

- non-specific t-test (1st, 2nd, 3rd order)
- several million traces
- two different measurement profiles

PROFILE 1:

- reference measurement
- PRNG off
- 1 000 000 power traces

PROFILE 2:

- actual measurement
- PRNG on
- 100 000 000 power traces

PRACTICAL EVALUATION | PROFILE 1 (PRNG OFF)

RUHR-UNIVERSITÄT BOCHUM | CHAIR FOR EMBEDDED SECURITY

EVOLUTION OF ABSOLUTE T-TEST MAXIMUM

PRACTICAL EVALUATION | PROFILE 2 (PRNG ON)

NON-SPECIFIC T-TEST (100 MILLION TRACES)

RUHR-UNIVERSITÄT BOCHUM | CHAIR FOR EMBEDDED SECURITY

CONCLUSION

CONCEPT:

- success of higher-order attacks depends on noise-level
- combining hiding countermeasures (noise addition) with provable secure first-order TI
- *dynamic hardware modification* (inspired by white-box cryptography) as generic hiding approach

RESULTS:

- FPGA implementation combining dynamic hardware modification approach with PRESENT TI
- power measurements and leakage assessment (non-specific t-test)
- case study implementation is (practically) secure against higher-order attacks (2nd and 3rd order)

Dynamic hardware modifications form an alternative to Higher-Order Threshold Implementations providing generality and scalability.

RUHR-UNIVERSITÄT BOCHUM

RUB

HIDING HIGHER-ORDER SIDE-CHANNEL LEAKAGE

- RANDOMIZING THRESHOLD IMPLEMENTATIONS IN RECONFIGURABLE HARDWARE -

pascal.sasdrich@rub.de

FINAL CONFERENCE ON TRUDEVICE 2016, BARCELONA, SPAIN

NOVEMBER 15, 2016

^{hg} EMSEC

Thank you for your attention! Any questions?