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“Can we implement masked hardware circuits 

that can be evaluated securely with low (zero) latency overhead?”

RESEARCH QUESTION & PROBLEMS

What is a suitable 
hardware masking 

scheme?

Is the masking scheme 
composable and robust 

against glitches?

What is the latency 
overhead of the 

masking scheme?

Can we build a secure single-cycle-per-round AES 
implementation with this approach?
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What is a suitable hardware 
masking scheme?
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GADGET CONSTRUCTION:
- Two Boolean shares (first-order secure)
- Complement of second share
- Structure separated into two layers:

- Mask table generator layer
- Operation layer

- Gray components only for non-linear gadgets 
(linear gadgets have independent layers)

- Fully combinational data path in each gadget

RESTRICTIONS:
- Only monotonic gates in operation layer
- Two phase operation (pre-charge & evaluation)

LUT-BASED MASKED DUAL-RAIL PRE-CHARGE LOGIC (LMDPL)

First-order secure gate-level masking technique to build masked gadgets (CHES’14).
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Is the masking scheme 
composable and robust 
against glitches?
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• CHES’14: Activity image analysis 

• Here: 1-glitch extended probing security (practical first-order security)

• 1-glitch extended strong non-interference (GSNI) of non-linear gadgets (e.g. AND)

• 1-glitch extended non-interference of linear gadgets

• Observe when synchronization is needed and enforced

• Argue first-order compossibility given the above information

• Reminder: 1-GSNI

• distinguish intermediate and output probes

• intermediate probe is independent of at least one input share

• output probe is independent of all input shares

THEORETICAL SECURITY ANALYSIS
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Assumption on operation layer:
• Only pre-charged monotonic gates
• Don’t touch constraints

Observations on a shared AND gadget:
• Operation layer

• Both si and x2 toggles only once (no glitch)
▪ Probing output doesn’t give info on each input

• Output does not need to be registered

• Mask table generator layer
• Depends on a single share
• Output independent of inputs and does not 

need to be registered

• ti crosses domain and needs to be 
registered.

THEORETICAL SECURITY ANALYSIS
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What is the latency 
overhead of the scheme?
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LOW-LATENCY IMPLEMENTATIONS USING LMDPL: ORIGINAL

ORIGINAL LMDPL CONSTRUCTION:
Two register stages = two phase operation.

CYCLE 0:
- Registers before inversion are pre-charged 
- Mask share & table generation active
CYCLE 1:
- Field inversion (non-linear) is evaluated 
- Mask share & table generation inactive  

and stable 
CYCLE 2:
- AES round operations (linear) are 

evaluated
- Mask share & table generation active
- Registers before inversion pre-charged

Two phase operation ensures and maintains 
glitch-free evaluation.

Figure taken from [LMW14].
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LOW-LATENCY IMPLEMENTATIONS USING LMDPL: THIS WORK

LOW-LATENCY LMDPL CONSTRUCTION:
- If: operation layer is pre-charged, and
- If: table generation is synchronized
- Then: gadgets are freely composable 
- Duality: alternating evaluation of two 

operation layers (hides pre-charge phase)
- Mask generation layer is not duplicated (no 

pre-charge phase required)

CYCLE 0:
- RFO1: pre-charge & mask generation
- RFO2: idle
CYCLE 1:
- RFO1: evaluation
- RFO2: pre-charge & mask generation
CYCLE 2:
- RFO1: pre-charge & mask generation 
- RFO2: evaluation

Gives an implementation of m/n cycles for an m-round
algorithm where each phase has an n-round evaluation circuit.
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Practical application to AES.
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IMPLEMENTATION RESULTS

Area and power results at 100 MHz after synthesis using GF28nm.
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OUR SOLUTION: 3.45 KGE (GF28NM)
• S-box operation: 1,137 GE
• Mask table generation: 611 GE
• 288-bit mask-table register: 1,728 GE
• 1-cycle latency with 36bit rnd./cycle

RELATED WORK:
• 1-cycle latency: only Gross et al., but:

• 60 kGE area 
• 2,048 Bit rnd./S-box/cycle

• 2-cycle latency constructions:
• Leiserson et al.: original LMDPL design
• Gross et al.: 6.74 kGE but still 416bit rnd.
• De Meyer et al.: 1.69 kGE and 19bit rnd., but 3 

cycle latency in full AES (zero-value problem)

COMPARISON TO EXISTING S-BOXES
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Practical security 
evaluations based on TVLA.
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GLOBAL SECURITY GOAL: 
Resistance with up to 100M power traces.

• Left side results:
• First-order statistical moment

• Second-order statistical moment

• Right side results:
• Average trace over 1M power traces

• First-order statistical moment 
(unprotected)

CONCLUSION:

No significant leakage in any of the 
observed statistical moments.

PRACTICAL SECURITY ANALYSIS
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EXTENDED SECURITY GOAL: 
Resistance with up to 1B power traces.

• Left side results:
• First-order statistical moment

• Second-order statistical moment

• Right side results:
• Leakage as function over number of traces 

(1st and 2nd order)

CONCLUSION:

Leakage detectable after 400M (220M) 
traces for 1st-(2nd)-order statistical moment. 
Key recovery still not successful.

PRACTICAL SECURITY ANALYSIS
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MULTIVARIATE SECURITY ANALYSIS:

Analysis based on bivariate statistics.

• Full AES: 500 Samples/Trace 

• Normalize: subtract mean samples

• Combine: multiply normalized samples

RESULTS:

• Gray: t-statistics within thresholds

• Red/blue: significant t-statistics

• Lower triangle: unprotected results, 100K traces

• Upper triangle: protected results, 1B traces

CONCLUSION:

Weak but expected leakage is observed (but only 
using up to 1B traces).

PRACTICAL SECURITY ANALYSIS
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We presented a hardware-masked, single-cycle-per-round AES implementation      
and proved its first-order security under the d-glitch extended probing model.

CONCLUSION

LMDPL for low-
latency hardware 

masking.

Secure even in presence 
of glitches. Gadgets can 
be composed securely.

Zero latency overhead 
compared to 

unprotected design.

Practical application to round-based AES 
architecture. Practically secure using up to 100M 

power traces for TVLA.
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Thank You
pascal.sasdrich@rub.de
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