Rambus

Low-Latency Hardware Masking with Application to AES

Pascal Sasdrich Begül Bilgin Michael Hutter Mark E. Marson

CHES 2020

RESEARCH QUESTION & PROBLEMS

"Can we implement masked hardware circuits

that can be evaluated securely with low (zero) latency overhead?"

Can we build a secure single-cycle-per-round AES implementation with this approach?

What is the latency verhead of the masking scheme?

What is a suit

scheme?

hardware m

What is a suitable hardware masking scheme?

LUT-BASED MASKED DUAL-RAIL PRE-CHARGE LOGIC (LMDPL)

First-order secure gate-level masking technique to build masked gadgets (CHES'14).

GADGET CONSTRUCTION:

- Two Boolean shares (first-order secure)
- Complement of second share
- Structure separated into two layers:
 - Mask table generator layer
 - Operation layer
- Gray components only for non-linear gadgets (linear gadgets have independent layers)
- Fully combinational data path in each gadget

RESTRICTIONS:

- Only monotonic gates in operation layer
- Two phase operation (pre-charge & evaluation)

Is the masking scheme composable and robust against glitches?

THEORETICAL SECURITY ANALYSIS

- CHES'14: Activity image analysis
- Here: 1-glitch extended probing security (practical first-order security)
 - 1-glitch extended strong non-interference (GSNI) of non-linear gadgets (e.g. AND)
 - 1-glitch extended non-interference of linear gadgets
 - Observe when synchronization is needed and enforced
 - Argue first-order compossibility given the above information
- Reminder: 1-GSNI
 - distinguish intermediate and output probes
 - intermediate probe is independent of at least one input share
 - output probe is independent of all input shares

THEORETICAL SECURITY ANALYSIS

Assumption on operation layer:

- Only pre-charged monotonic gates
- Don't touch constraints

Observations on a shared AND gadget:

- Operation layer
 - Both s^i and x_2 toggles only once (no glitch)
 - Probing output doesn't give info on each input
 - Output does not need to be registered
- Mask table generator layer
 - Depends on a single share
 - Output independent of inputs and does not need to be registered
- tⁱ crosses domain and needs to be registered.

What is the latency overhead of the scheme?

Rambus Data · Faster · Safer

LOW-LATENCY IMPLEMENTATIONS USING LMDPL: ORIGINAL

ORIGINAL LMDPL CONSTRUCTION:

Two register stages = two phase operation.

CYCLE 0:

- Registers before inversion are pre-charged
- Mask share & table generation active CYCLE 1:

- Field inversion (non-linear) is evaluated
- Mask share & table generation inactive and stable

CYCLE 2:

- AES round operations (linear) are evaluated
- Mask share & table generation active
- Registers before inversion pre-charged

Two phase operation ensures and maintains glitch-free evaluation.

LOW-LATENCY IMPLEMENTATIONS USING LMDPL: THIS WORK

Practical application to AES.

IMPLEMENTATION RESULTS

Module	Protected Key Expansion			Standard Key Expansion		
	Enc./Dec.	Enc.	Dec.	Enc./Dec.	Enc.	Dec.
	[kGE]	[kGE]	[kGE]	[kGE]	[kGE]	[kGE]
Cryptographic Engine (AES)	174.4	157.5	167.2	136.3	123.1	129.2
$control \ {\ensuremath{\mathcal E}}\ connection$	0.4	0.5	0.5	0.4	0.4	0.5
$data \ mask-table \ generation$	14.9	12.2	12.9	14.1	11.7	12.2
data operation layer	114.4	103.8	109.1	114.3	103.8	109.0
key mask-table generation	5.3	5.1	5.3	-	-:	-
key operation layer	39.4	35.9	39.4	7.5	7.2	7.5
Entropy Engine (PRNG)	14.8	14.8	14.8	11.2	11.2	11.2
Power Consumption [mW]	4.728	4.517	4.661	3.627	3.494	3.608

Area and power results at 100 MHz after synthesis using GF28nm.

COMPARISON TO EXISTING S-BOXES

Works	Area	Latency	Randomness	
	[kGE]	[cycles]	[bits]	
Gross et al. [GIB18]	60.73	1	2,048	
Gross et al. [GIB18]	6.74	2	416	
Moradi et al. $[MPL^+11]$	4.24	4	48	
Wegener and Moradi. [WM18]	4.20	16	0	
Bilgin et al. $[BGN^+14b]$	3.71	3	44	
Sugawara [Sug19]	3.50	4	0	
Ghoshal and De Cnudde [GC17]	2.91	3	20	
Bilgin et al. $[BGN^+15]$	2.84	3	32	
Leiserson et al. [LMW14]	2.83	2	36	
Gross et al. [GM18]	2.20	8	18	
De Cnudde et al. $[DCRB^+16]$	1.98	6	54	
De Meyer et al. [DRB18]	1.69	2+3	19	
Ueno et al. [UHA17]	1.42	5	64	
Our Solution	3.48	1	36	

OUR SOLUTION: 3.45 KGE (GF28NM)

- S-box operation: 1,137 GE
- Mask table generation: 611 GE
- 288-bit mask-table register: 1,728 GE
- 1-cycle latency with 36bit rnd./cycle

RELATED WORK:

- 1-cycle latency: only Gross et al., but:
 - 60 kGE area
 - 2,048 Bit rnd./S-box/cycle
- 2-cycle latency constructions:
 - Leiserson et al.: original LMDPL design
 - Gross et al.: 6.74 kGE but still 416bit rnd.
 - De Meyer et al.: 1.69 kGE and 19bit rnd., but 3 cycle latency in full AES (zero-value problem)

Practical security evaluations based on TVLA.

> **Rambus Data** · Faster · Safer

PRACTICAL SECURITY ANALYSIS

GLOBAL SECURITY GOAL:

Resistance with up to 100M power traces.

- Left side results:
 - First-order statistical moment
 - Second-order statistical moment
- Right side results:
 - Average trace over 1M power traces
 - First-order statistical moment (unprotected)

CONCLUSION:

No significant leakage in any of the observed statistical moments.

PRACTICAL SECURITY ANALYSIS

EXTENDED SECURITY GOAL:

Resistance with up to 1B power traces.

- Left side results:
 - First-order statistical moment
 - Second-order statistical moment
- Right side results:
 - Leakage as function over number of traces (1st and 2nd order)

CONCLUSION:

Leakage detectable after 400M (220M) traces for 1st-(2nd)-order statistical moment. Key recovery still not successful.

PRACTICAL SECURITY ANALYSIS

MULTIVARIATE SECURITY ANALYSIS:

Analysis based on bivariate statistics.

- Full AES: 500 Samples/Trace
 - Normalize: *subtract mean samples*
- Combine: multiply normalized samples

RESULTS:

6

3

- Gray: t-statistics within thresholds
- Red/blue: significant t-statistics
- Lower triangle: *unprotected results, 100K traces*
 - Upper triangle: protected results, 1B traces

CONCLUSION:

⁹ Weak but expected leakage is observed (but only using up to 1B traces).

18

CONCLUSION

We presented a hardware-masked, single-cycle-per-round AES implementation and proved its first-order security under the d-glitch extended probing model.

LMDPL for low Practical application to round-based AES latency har architecture. Practically secure using up to 100M masking. power traces for TVLA. unprotected design.

Thank You pascal.sasdrich@rub.de

REFERENCES

- [GIB18] Hannes Groß, Rinat lusupov, and Roderick Bloem. Generic low-latency masking in hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):1–21, 2018.
- [MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Pushing the limits: A very compact and a threshold implementation of AES. In Advances in Cryptology -EUROCRYPT 2011 - 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, pages 69–88, 2011.
- [WM18] Felix Wegener and Amir Moradi. A first-order SCA resistant AES without fresh randomness. In Junfeng Fan and Benedikt Gierlichs, editors, *Constructive Side-Channel Analysis and Secure Design 9th International Workshop, COSADE 2018, Singapore, April 23-24, 2018, Proceedings*, volume 10815 of *Lecture Notes in Computer Science*, pages 245–262. Springer, 2018.
- [BGN+14b] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. A more efficient AES threshold implementation. In David Pointcheval and Damien Vergnaud, editors, *Progress in Cryptology AFRICACRYPT 2014*, pages 267–284, Cham, 2014. Springer International Publishing.
- [Sug19] Takeshi Sugawara. 3-share threshold implementation of AES s-box without fresh randomness. *IACR Trans. Cryptogr. Hardw. Embed. Syst.*, 2019(1):123–145, 2019.
- [GC17] Ashrujit Ghoshal and Thomas De Cnudde. Several masked implementations of the Boyar-Peralta AES s-box. In *Progress in Cryptology INDOCRYPT 2017 18th International* Conference on Cryptology in India, Chennai, India, December 10-13, 2017, Proceedings, pages 384–402, 2017.
- [BGN+15] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Nikov Ventzislav, and Vincent Rijmen. Trade-offs for threshold implementations illustrated on AES. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 34(7):1188–1200, July 2015.
- [LMW14] Andrew J. Leiserson, Mark E. Marson, and Megan A. Wachs. Gate-level masking under a path-based leakage metric. In Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware and Embedded Systems CHES 2014 16th International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731 of Lecture Notes in Computer Science, pages 580–597. Springer, 2014.
- [GM18] Hannes Groß and Stefan Mangard. A unified masking approach. J. Cryptographic Engineering, 8(2):109–124, 2018.
- [DCRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. Masking AES with d+1 shares in hardware. In *Proceedings of the 2016 ACM Workshop on Theory of Implementation Security*, TIS '16, pages 43–43, New York, NY, USA, 2016. ACM.
- [DRB18] Lauren De Meyer, Oscar Reparaz, and Begül Bilgin. Multiplicative masking for AES in hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):431–468, 2018.

[UHA17] Rei Ueno, Naofumi Homma, and Takafumi Aoki. Toward more efficient DPA-resistant AES hardware architecture based on threshold implementation. In Sylvain Guilley, editor, *Constructive Side-Channel Analysis and Secure Design*, pages 50–64, Cham, 2017. Springer International Publishing.

R Data • Faster • Safer