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RESEARCH QUESTION & PROBLEMS

Can we build a secure single-cycle-per-round AES
implementation with this approach?
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What is a suitable hardware
masking scheme?
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LUT-BASED MASKED DUAL-RAIL PRE-CHARGE LoGIC (LMDPL)

First-order secure gate-level masking technique to build masked gadgets (CHES’14).

GADGET CONSTRUCTION:
- Two Boolean shares (first-order secure)
';’:ﬁ‘e( - Complement of second share
generator - Structure separated into two layers:
layer Mask table generator layer
Operation layer
4 - Gray components only for non-linear gadgets
(linear gadgets have independent layers)
Operation - Fully combinational data path in each gadget
layer
\_

Only monotonic gates in operation layer
Two phase operation (pre-charge & evaluation)
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Is the masking scheme
composable and robust
against glitches?
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THEORETICAL SECURITY ANALYSIS

e CHES’14: Activity image analysis
* Here: 1-glitch extended probing security (practical first-order security)
1-glitch extended strong non-interference (GSNI) of non-linear gadgets (e.g. AND)
1-glitch extended non-interference of linear gadgets
- Observe when synchronization is needed and enforced
« Argue first-order compossibility given the above information

* Reminder: 1-GSNI
- distinguish intermediate and output probes
intermediate probe is independent of at least one input share

- output probe is independent of all input shares
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THEORETICAL SECURITY ANALYSIS

Mask
table
generator
layer

Operation
layer
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Assumption on operation layer:
« Only pre-charged monotonic gates
Don’t touch constraints

« Operation layer

Both s' and x, toggles only once (no glitch)
Probing output doesn’t give info on each input

Output does not need to be registered
« Mask table generator layer

Depends on a single share

Output independent of inputs and does not
need to be registered

« tl crosses domain and needs to be
registered.



What is the latency
overhead of the scheme?

rambus

Data - Faster - Safer




LOW-LATENCY IMPLEMENTATIONS USING LMDPL: ORIGINAL
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Figure taken from [LMW14].

ORIGINAL LMDPL CONSTRUCTION:
Two register stages = two phase operation.

CycLE O:

- Registers before inversion are pre-charged
- Mask share & table generation active
CyCLE 1:

- Field inversion (non-linear) is evaluated

- Mask share & table generation inactive
and stable

CYCLE 2:

- AES round operations (linear) are
evaluated

- Mask share & table generation active
- Registers before inversion pre-charged

Two phase operation ensures and maintains
glitch-free evaluation.




LOW-LATENCY IMPLEMENTATIONS USING LMDPL: THIS WORK

LOW-LATENCY LMDPL CONSTRUCTION:
If: operation layer is pre-charged, and
If: table generation is synchronized
Then: gadgets are freely composable
Duality: alternating evaluation of two

nneratinn laverc (hidoec nre_rharge nhace)

Gives an implementation of m/n cycles for an m-round
algorithm where each phase has an n-round evaluation circuit.

KEY EXP. MASK-

TABLE GEN. —|
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RFO1: evaluation

RFO2: pre-charge & mask generation
CYCLE 2:

RFO1: pre-charge & mask generation

RFO2: evaluation
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Practical application to AES.
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IMPLEMENTATION RESULTS

Module Protected Key Expansion Standard Key Expansion
Enc./Dec. Enc. Dec. Enc./Dec. Enc. Dec.

[KGE] [kGE] [kGE] [kGE] [kGE] [kGE]

Cryptographic Engine (AES) 174.4 187.5 167.2 136.3 123.1 129.2
control & connection 0.4 0.5 0.5 0.4 0.4 0.5
data mask-table generation 14.9 12:2 12.9 14.1 L3y 4 12:2
data operation layer 114.4 103.8 109.1 114.3 103.8 109.0
key mask-table generation 5.3 5.1 5.3 - - -
key operation layer 39.4 35.9 39.4 7.5 7.2 7.5
Entropy Engine (PRNG) 14.8 14.8 14.8 11.2 11.2 11.2
Power Consumption [mW] 4.728 4.517 4.661 3.627 3.494 3.608
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Area and power results at 100 MHz after synthesis using GF28nm.
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COMPARISON TO EXISTING S-BOXES

OUR SOLUTION: 3.45 KGE (GF28NMm)

* S-box operation: 1,137 GE

Works Area Latency Randomness .
GE] —— [biee] * Mask table generation: 611 GE
Gross et al. [CIB18] 60.73 1 2,048 e 288-bit mask-table register: 1,728 GE
Gross et al. [GIB18] 6.74 2 16 e 1-cycle latency with 36bit rnd./cycle
Moradi et al. [MPL™11] 4.24 4 48
Wegener and Moradi. [WM18] 4.20 16 0
Bilgin et al. [BGN T 14b] 3.71 3 44 RELATED WORK:
Sugawara [Sugl9] 3.50 4 0 |
Ghoshal and De Cnudde [GC17] 2.91 3 20 ¢ 1‘CVC|e |atenCV1 Only Gross et al-, bUt
Bilgin et al. [BGN T 15] 2.84 3 32 « 60 kGE area
Leiserson et al. LMW 14] 2.83 2 36 . . _
Gross et al. [GM18] 2.20 8 18 2'048 Bit rnd'/S bOX/CVCle.
De Cnudde et al. [DCRB* 16] 1.08 6 54 e 2-cycle latency constructions:
De Meyer et al. [DRB18] 1.69 2+3 19 - Leiserson et al.: original LMDPL design
Ueno et al. [UHA17] 1.42 5 64

Gross et al.: 6.74 kGE but still 416bit rnd.

Our Solution 348 ! 36 - De Meyer et al.: 1.69 kGE and 19bit rnd., but 3

cycle latency in full AES (zero-value problem)

@) Data - Faster - Safer 14



Practical security
evaluations based on TVLA.
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PRACTICAL SECURITY ANALYSIS
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AES-128 unprotected
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GLOBAL SECURITY GOAL:
Resistance with up to 100M power traces.
e Left side results:
- First-order statistical moment
- Second-order statistical moment
* Right side results:
« Average trace over 1M power traces

« First-order statistical moment
(unprotected)

CONCLUSION:

No significant leakage in any of the
observed statistical moments.
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PRACTICAL SECURITY ANALYSIS

EXTENDED SECURITY GOAL:
Resistance with up to 1B power traces.
N T * Left side results:
- « First-order statistical moment
- Second-order statistical moment
* Right side results:

- Leakage as function over number of traces
(15t and 2" order)

der t-statist
' =] \
1" order t-statist
n
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CONCLUSION:

e W e oo o w  Leakage detectable after 400M (220M)
Samples Number of traces [in 10 million steps] . .
traces for 15-(2"9)-order statistical moment.
Key recovery still not successful.

4 order t-statist
!
n =
4 order t-statistic
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PRACTICAL SECURITY ANALYSIS

MULTIVARIATE SECURITY ANALYSIS:

Analysis based on bivariate statistics.
6 e Full AES: 500 Samples/Trace

...{; * Normalize: subtract mean samples

AL . , ,

: "" ; 3 * Combine: multiply normalized samples
| I

BT RS RE TR RESULTS:

* (Gray: t-statistics within thresholds

* Red/blue: significant t-statistics

|
! -3 o

Lower triangle: unprotected results, 100K traces

YR

* Upper triangle: protected results, 1B traces

CONCLUSION:

Weak but expected leakage is observed (but only
100 200 300 400 using up to 1B traces).
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CONCLUSION

We presented a hardware-masked, single-cycle-per-round AES implementation
and proved its first-order security underthe d-glitch exteiided probing model.

LMDPL for lg Practical application to round-based AES
architecture. Practically secure using up to 100M

power traces for TVLA.
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