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INTRODUCTION

Why do we need to verify hardware security?



CRYPTOGRAPHY IN THEORY AND PRACTICE

THEORY

Strong and robust cryptographic algorithms.

Implicit secrecy and integrity of
computations.

A

Attackers observe and manipulate
physical characteristics.
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THREATS & ATTACKS

@ ml SIDE-CHANNEL ANALYSIS

i Passive implementation attacks exploiting information leakage:
= execution time

= power & energy consumption

TYTTRITIN] . = . L
= electro-magnetic radiations

AR LTI AN, G md FAULT INJECTION ANALYSIS

Active implementation attacks exploiting information tampering:

s = clock & voltage glitches
= electro-magnetic pulses

-
-
N2 = laser beams
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DESIGN & VALID4Z
Can remove security features

hand-crafted and properties.
solutions

nthesis, placing , etc.)

= (Optimization for area, power, performance, etc.

Cl l
c = Classical processing
27 @

HARDWARE
DESIGN TEAM

R\ = Empirical validation through practical attacks

80

SECURE
HARDWARE
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SIDE CHANNEL ANALYSIS

How do we urity against pas information leakage?



ADVERSARY | OBSERVING
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ATTACKER
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ADVERSARY | MODEL

— Threshold t-probing model [ISW03]
N 3
N

\\,

P

) _ Al each probe is:
_: D * noise-free, instantaneous & stable
by —————— FAN

By ——————]

>

access toup to t < d wires of a circuit

probes are static during circuit invocation

'\\\\, = ndependent of all other probes
N M [, = probe-extensions [FGMDP+18] to model
by —————— 4
- A = combinatorial recombinations (glitches)
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COUNTERMEASURES | MASKING

BOOLEAN MASKING:

= predominant hardware countermeasure

formal and sound security foundation:

> X€eF, > XX .. X5 eF;

. $
- X'« F,

- X = (@5 X') & X

MASKING

logic operations on shared representation
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COUNTERMEASURES | GADGETS

PROBLEM:

[ ]
‘ Finding efficient masked circuits is hard for:

= higher security orders d

- = complex circuits and Boolean functions
SOLUTION:

Masked circuits for atomic logic functions:

COMPOSING = mainly focus on masked AND & XOR gates

GADGETS = special notions ensure secure composition
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COMPUTER-AIDED VERIFICATION | NOTIONS

[

t-PROBING [ISW03] P-NI [BBD+15] P-SNI [BBD+16] P-INI [CS20]

d' d
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VERIFICATION TOOL | APPROACH
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GATE-LEVEL CIRCUIT MODEL STAT. MODEL LEAKAGE
NETLIST (DAG) (BDD) VERIFICATION
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VERIFICATION TOOL | STATISTICAL MODEL

CONCEPT:

N

= circuit gates are stored as Binary Decision Diagrams

= BDDs allow counting satisfying solutions
» jdentical and independent distributed inputs
= gate outputs modeled as binary events

A

Z
2
r
-
Z
2
-~

e
-

= compute statistical independence on binary events

O OO NN

|\ i "//;f,/ —
S
STATISTICAL All security and composability notions can be expressed

MODEL in terms of statistical independence.

\
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VERIFICATION TOOL | SILVER [KSM20] %%%
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FAULT INJECTION ANALYSIS

How do we verify security against active information tampering?



ADVERSARY | MANIPULATING
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ADVERSARY | MODEL

Parametrized injection model [RBSG22]

= alter toup ton’ < n gates of a circuit

= each injection is parametrized by:

L = cardinality (number of faults)

\ﬁj j
B

= type (e.g., set, reset, bit-flip, etc.)

ﬁDi —— = [ocation (comb, or seq. logic)
" i = predefined parameters for:

L = clock/voltage glitches

|
X
wAw,

"

L fevor Fing = EMpulses,
= [aser fault injections
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COUNTERMEASURES | REDUNDANCY

REDUNDANCY:

\\

=~
N\ \\\\\\\\\%

W

==

4 .

= comparison of k + 1 results to:

- detectupto k errors

k
- correctup to - €rrors

module, or system level

REDUNDANCY

repeated computation in space or time

can be implemented on gate, component,
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COMPUTER-AIDED VERIFICATION | NOTIONS

DETECTION CORRECTION
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VERIFICATION | APPROACH

GATE-LEVEL CIRCUIT MODEL SYMBOLIC TAMPERING
NETLIST (DAG) SIMULATION VERIFICATION

RUHR
20 COMPUTER-AIDED HARDWARE SECURITY VERIFICATION UNIVERSITAT R U B
BOCHUM



VERIFICATION TOOL | SYMBOLIC SIMULATION

CONCEPT:
= circuit gates are stored as Binary Decision Diagrams
= Symbolic simulation of golden and faulty circuits

= compute distance function (XOR) of outputs

v All detected, effective, and ineffective faults can be

computed as satisfying solutions.

SYMBOLIC
SIMULATION
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VERIFICATION TOOL | FIVER [RBRSS+21]
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COMBINED ANALYSIS

How do we verify security against combined information leakage and
tampering?



ADVERSARY MODEL | COMBINED
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ADVERSARY MODEL | MODEL
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Threshold t-probing model [ISWO03] Parametrized injection model [RBSG22]
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COUNTERMEASURES | MASKED REDUNDANCY

MASKED REDUNDANCY:

= Boolean sharing, combined with

= Redundancy for detected/correction
CHALLENGES:

= distribution and replication of randomness
generation (reciprocal effects).

= shared detection/error flags

MASKED
REDUNDANCY = signal (= leakage) amplification
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COMPUTER-AIDED VERIFICATION [ NOTIONS I/ll

F-NI [DN20] F-SNI [DN20] F-INI [FFRBS+22]

ka
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COMPUTER-AIDED VERIFICATION [ NOTIONS Ii/1l

COMB. [RBFS+22] C-NI [DN20] C-SNI [DN20] C-SNI;,q [DN20] C-INI [FFRBS+22]
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VERIFICATION TOOL | VERICA

GATE-LEVEL CIRCUIT MODEL SYMBOLIC STAT. MODEL COMBINED
NETLIST (DAG) SIMULATION (BDD) VERIFICATION
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VERIFICATION | RECIPROCAL EFFECTS

. PROBLEMS:

Fault propagation and misbehavior in shared circuits.

1. Faults injected into generated randomness:

- effective faults but functionally correct behavior
2. Multiple valid sharings for same secret:

- localization of faulty shares is hard

Reciprocal effects require adjusted definition for the
golden (fault-free) shared circuit.

RECIPROCAL
EFFECTS
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VERIFICATION TOOL | VERICA [RBFS+22]
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CONCLUSION

Your free takeaway for today :)



CONCLUSION

COMPUTER-AIDED HARDWARE SECURITY VERIFICATION

VERICA

INFORMATION LEAKAGE COMBINATION INFORMATION TAMPERING
SIDE-CHANNEL ANALYSIS COMBINED ANALYSIS FAULT INJECTION ANALYSIS
CIRCUITS GADGETS
SECURITY COMPOSABILITY
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FURTHER DETAILS

Source code, documentation, contact details, references



FURTHER DETAILS | TOOLS

SILVER

https://github.com/Chair-for-Security-Engineering/SILVER
https://eprint.iacr.org/2020/634.pdf
pascal.sasdrich@rub.de

FIVER

https://github.com/Chair-for-Security-Engineering/FIVER
https://eprint.iacr.org/2021/936.pdf
jan.richter-brockmann@rub.de / pascal.sasdrich@rub.de

VERICA

https://github.com/Chair-for-Security-Engineering/VERICA
https://eprint.iacr.org/2022/484.pdf
jan.richter-brockmann@rub.de / pascal.sasdrich@rub.de
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Thank you!

pascal.sasdrich@rub.de

Chair for Security Engineering
Faculty for Computer Science
Ruhr University Bochum



