

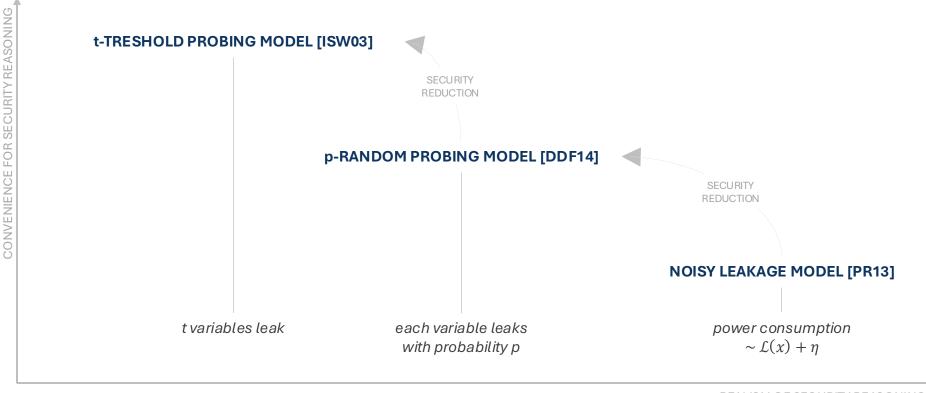
INDIANA – VERIFYING (RANDOM) PROBING SECURITY THROUGH INDISTINGUISHABILITY ANALYSIS

CHRISTOF BEIERLE, JAKOB FELDTKELLER, ANNA GUINET, TIM GÜNEYSU, GREGOR LEANDER, JAN RICHTER-BROCKMANN, **PASCAL SASDRICH**

EUROCRYPT 2025 | MADRID, SPAIN | MAY 5, 2025

MOTIVATION | PHYSICAL IMPLEMENTATION ATTACKS

IMPLEMENTATION OF HARDWARE MASKING SCHEMES IS A COMPLEX, DELICATE, AND ERROR-PRONE PROCESS.


MOTIVATION | FORMAL SECURITY REASONING

ADVERSARY MODELS SECURITY PROPERTIES ARCHITECTURAL & ENVIRONMENTAL CONDITIONS

AUTOMATED SECURITY REASONING TOOLS ALLOW PRE-MANUFACTURING VULNERABILITY DETECTION.

PRELIMINARIES | LEAKAGE MODELS

REALISM OF SECURITY REASONING

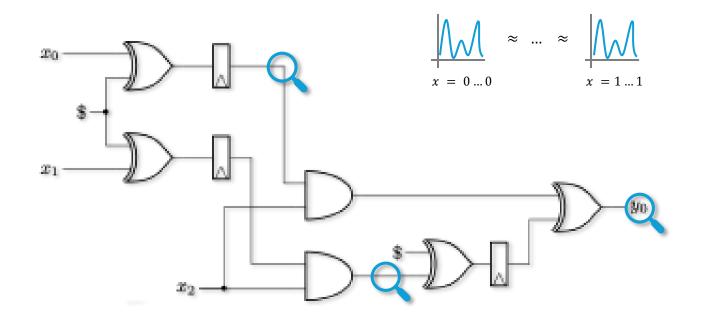
STATE-OF-THE-ART REASONING TOOLS ARE RESTRICTED (FOR STRUCTURES AND/OR MODELS) OR INCOMPLETE.

CONTRIBUTION | RESEARCH MISSION

DEVELOP

SOUND, ACCURATE AND EFFICIENT TOOLS

FOR VERIFYING THE SECURITY OF

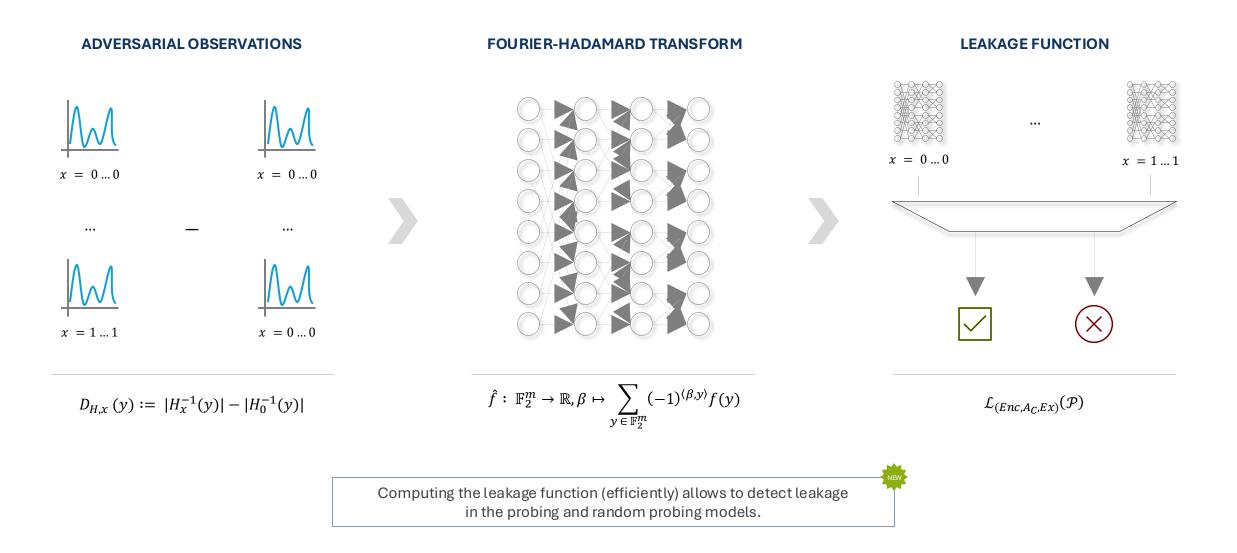

ARBITRARY AND COMPLEX MASKED HARDWARE CIRCUITS

UNDER

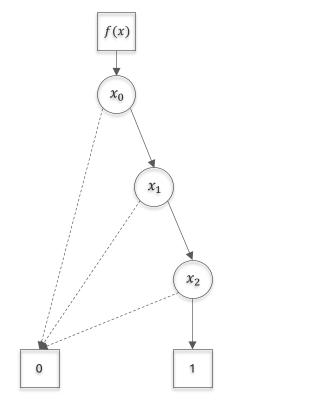
MORE REALISTIC LEAKAGE MODELS

OUR CONTRIBUTIONS

THEORY | SECURITY DEFINITION

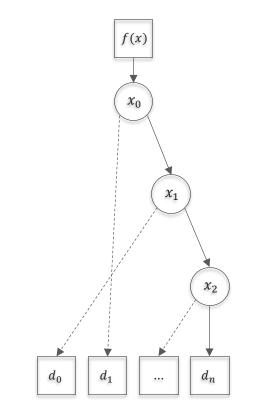


INDISTINGUISHABILITY – PROBING SECURITY


For a fixed set of t probes, an ADVERSARY cannot distinguish between different input values $x \in \mathbb{F}_2^{n_i}$.

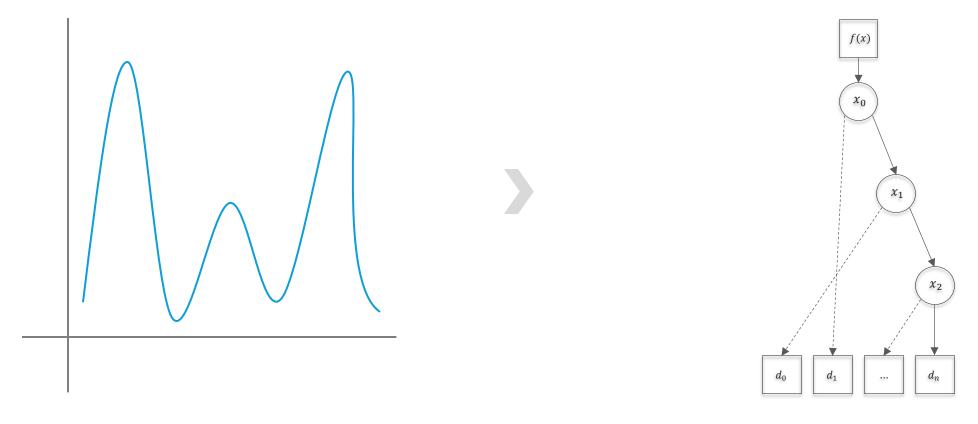
 $\mathcal{L}_{(Enc,A_{C},Ex)}(\mathcal{P}) = 0$ for all sets $\mathcal{P} \subseteq \mathcal{W}$ of up to t probes

THEORY | DERIVING LEAKAGE FUNCTIONS



IMPLEMENTATION | GRAPH-BASED DECISION DIAGRAMS

BINARY DECISION DIAGRAMS


A Reduced Ordered Binary Decision Diagram is a concise and unique (i.e., canonical) graph-based representation of a Boolean function $f: \mathbb{F}_2^n \to \mathbb{F}_2$

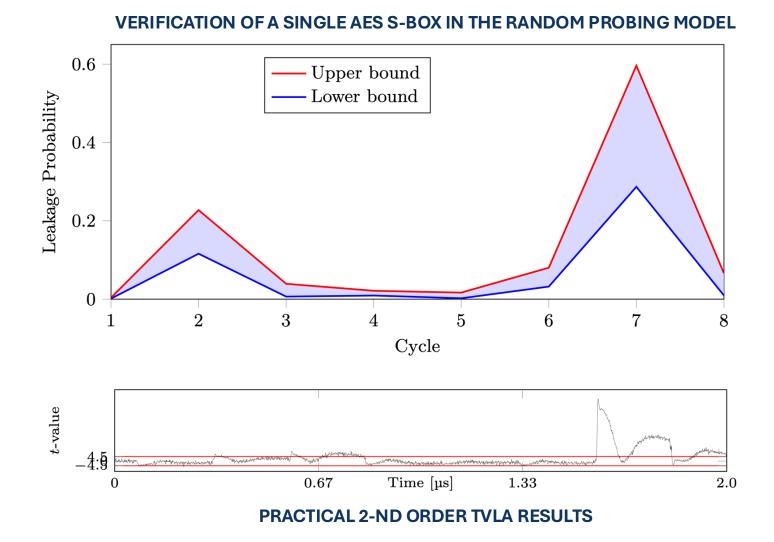
MULTI-TERMINAL BINARY DECISION DIAGRAMS

MTBDDs are an extension to represent functions from a multi-dimensional Boolean domain to an arbitrary value set $f: \mathbb{F}_2^n \to \mathbb{D}$.

IMPLEMENTATION | FROM THEORY TO PRACTICE

(DISCRETE) PROBABILITY DISTRIBUTION

VECTOR OF OCCURENCES (FREQUENCIES)


Computing the Fourier-Hadamard Transform and the leakage function maps to basic BDD and MTBDD operations.

EVALUATION RESULTS

EVALUATION | AES ROUND (RANDOM PROBING)

Cycle	Positions	Probes	Samples	Leakage	Total Elapsed Time
1	16×72	16×2	16×2556	0.056/0.458	$1.20 \min$
2	16 imes 138	16×2	16 imes 9453	0.785/0.966	$6.25 \min$
3	16 imes 72	16×2	16×2556	0.099/0.472	$39.33 \min$
4	16 imes 52	16 imes 2	16 imes 1326	0.145/0.296	$39.43\mathrm{min}$
5	16×52	16×2	16 imes 1326	0.034/0.236	$39.53\mathrm{min}$
6	16 imes 92	16×2	16×4186	0.406 / 0.738	$39.79\mathrm{min}$
7	16×304	16×2	16 imes 46056	0.992/0.999	$3.33\mathrm{h}$
8	16 imes 102	16×2	16×5151	0.149/0.767	$3.58\mathrm{h}$
9	4×324	16 imes 2	4×52326	0.051/0.981	$3.76~\mathrm{h}$

EVALUATION | FROM THEORY TO PRACTICE

CONCLUSION | CONTRIBUTIONS

OUR CONTRIBUTIONS IN A NUTSHELL

- 1. Formalizing probing security in terms of indistinguishability.
- 2. Deriving leakage functions using the Fast Fourier-Hadamard Transformation.
- 3. Implementation of a versatile verification framework: https://github.com/Chair-for-Security-Engineering/INDIANA

PAPER

THANK YOU – DO YOU HAVE ANY QUESTIONS?

pascal.sasdrich@rub.de

REFERENCES

- [ISW03] Yuval Ishai, Amit Sahai, David A. Wagner: Private Circuits: Securing Hardware against Probing Attacks. CRYPTO 2003: 463-481
- [PR13] Emmanuel Prouff, Matthieu Rivain: Masking against Side-Channel Attacks: A Formal Security Proof. EUROCRYPT 2013: 142-159
- [DDF14] Alexandre Duc, Stefan Dziembowski, Sebastian Faust: Unifying Leakage Models: From Probing Attacks to Noisy Leakage. EUROCRYPT 2014: 423-440