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MOTIVATION | PHYSICAL IMPLEMENTATION ATTACKS

SIDE-CHANNEL ANALYSIS
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IMPLEMENTATION OF HARDWARE MASKING SCHEMES IS ACOMPLEX, DELICATE, AND ERROR-PRONE PROCESS.
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MOTIVATION | FORMAL SECURITY REASONING
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ADVERSARY SECURITY ARCHITECTURAL &
MODELS PROPERTIES ENVIRONMENTAL
CONDITIONS

AUTOMATED SECURITY REASONING TOOLS ALLOW PRE-MANUFACTURING VULNERABILITY DETECTION.
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PRELIMINARIES | LEAKAGE MODELS

t-TRESHOLD PROBING MODEL [ISW03]

p-RANDOM PROBING MODEL [DDF14]

NOISY LEAKAGE MODEL [PR13]

tvariables leak each variable leaks power consumption
with probability p ~L(x) +7n

STATE-OF-THE-ART REASONING TOOLS ARE RESTRICTED (FOR STRUCTURES AND/OR MODELS) ORINCOMPLETE.
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CONTRIBUTION | RESEARCH MISSION

DEVELOP

SOUND, ACCURATE AND EFFICIENT TOOLS
FOR VERIFYING THE SECURITY OF

ARBITRARY AND COMPLEX MASKED HARDWARE CIRCUITS
UNDER

MORE REALISTIC LEAKAGE MODELS
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OUR CONTRIBUTIONS



THEORY | SECURITY DEFINITION
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INDISTINGUISHABILITY - PROBING SECURITY

For afixed set of t probes, an ADVERSARY cannot distinguish between different input values x € [Frzli.

L(gncac,px)(P) = 0 forallsets P S W of up to t probes i
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THEORY | DERIVING LEAKAGE FUNCTIONS

ADVERSARIAL OBSERVATIONS FOURIER-HADAMARD TRANSFORM
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Computing the leakage function (efficiently) allows to detect leakage
in the probing and random probing models.

LEAKAGE FUNCTION

L(Enc,Ac,Ex)(:P )
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IMPLEMENTATION | GRAPH-BASED DECISION DIAGRAMS
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BINARY DECISION DIAGRAMS MULTI-TERMINAL BINARY DECISION DIAGRAMS
A Reduced Ordered Binary Decision Diagram is a concise and unique (i.e., MTBDDs are an extension to represent functions from a multi-dimensional
canonical) graph-based representation of a Boolean function f: F} — [, Boolean domain to an arbitrary value set f: F; — D.
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IMPLEMENTATION | FROM THEORY TO PRACTICE
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(DISCRETE) PROBABILITY DISTRIBUTION

Computing the Fourier-Hadamard Transform and the leakage function
maps to basic BDD and MTBDD operations.
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EVALUATION RESULTS



EVALUATION | AES ROUND (RANDOM PROBING)

Cycle Positions Probes Samples Leakage Total Elapsed Time

1 16 x 72 16 x 2 16 X 2556 0.056/0.458 1.20 min
2 16 x 138 16 x 2 16 x 9453 0.785/0.966 6.25 min
3 16 x 72 16 x 2 16 X 2556 0.099/0.472 39.33 min
4 16 x 52 16 x 2 16 x 1326 0.145/0.296 39.43 min
5 16 x 52 16 x 2 16 x 1326 0.034/0.236 39.53 min
6 16 x 92 16 x 2 16 x 4186 0.406/0.738 39.79 min
7 16 x 304 16 X 2 16 x 46056  0-992/0.999 3.33h

8 16 x 102 16 x 2 16 x 5151 0.149/0.767 3.58 h

9 4 x 324 16 x 2 4 x 52326 0.051/0.981 3.76 h
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EVALUATION | FROM THEORY TO PRACTICE

VERIFICATION OF A SINGLE AES S-BOXIN THE RANDOM PROBING MODEL
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PRACTICAL 2-ND ORDER TVLA RESULTS
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CONCLUSION | CONTRIBUTIONS

OUR CONTRIBUTIONS IN A NUTSHELL
1.  Formalizing probing security in terms of indistinguishability.

2. Deriving leakage functions using the Fast Fourier-Hadamard
Transformation.

3. Implementation of a versatile verification framework:
https://github.com/Chair-for-Security-Engineering/INDIANA
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THANK YOU - DO YOU HAVE ANY QUESTIONS?
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