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THE BOCHUM CYBERSECURITY ECOSYSTEM

A UNIQUE SECURITY ECOSYSTEM
= |Leadingresearch institutions:
300 researchers, 1000 students

=  Numerous successful start-ups,
supported through incubator

= Home of various established
companies (G-Data, escrypt)
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COMPUTER-AIDED VERIFICATION (CAVE) GROUP

ACTIVE AND PASSIVE PHYSICAL IMPLEMENTATION ATTACKS
= Side-Channel Analysis (SCA)

ter

= Fault-Injection Analysis (FIA)
= Combined Attacks (CA)

FORMAL SECURITY DEFINITIONS AND MODELS

= Adversary models for SCA, FIA, and CA

= Security models and definitions for SCA, FIA, and CA

= Compositional properties of security definitions

COMPUTER-AIDED SECURITY ENGINEERING
= Automated formal verification of physical security properties (today)
E = Computer-aided design and generation of secure design

= Automated optimization and automated repair of secure designs
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MOTIVATION | STANDARD ADVERSARY
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ADVERSARY CAN SEND AND RECEIVE
INPUTS AND OUTPUTS OF CRYPTOGRAPHIC OPERATIONS
(BLACK-BOX MODEL)
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MOTIVATION | PHYSICAL ADVERSARY
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ADVERSARY CAN OBSERVE AND MANIPULATE
THE PHYSICAL EXECUTION ENVIRONMENT OF THE DEVICE
(GRAY-BOX MODEL)
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MOTIVATION | SECURITY TESTING
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TEST QUALITY IS HIGHLY DEPENDENT ON
EVALUTOR'’S RIGOR, EXPERTISE, AND CREATIVITY.
TESTING CANNOT OFFER GUARANTEES.
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MOTIVATION | SECURITY VERIFICATION
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SECURITY PROOF

FORMAL VERIFICATION USES MATHEMATICAL MODELS THAT
REPRESENT SYSTEMS AND ATTACKERS TO PROOF SECURITY
(WITHIN THE CONSIDERED MODELS)
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AGENDA

1. WHO WE ARE

MOTIVATION | WHY SECURITY VERIFICATION?
BACKGROUND | SECURITY MODELS
VERIFICATION | TECHNIQUES AND TOOLS
RESULTS | CASE STUDIES

CONCLUSION
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BACKGROUND | (ROBUST) THRESHOLD PROBING MODEL
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SYSTEM MODEL: DIGITAL LOGIC CIRCUIT
We model digital logic circuits as a directed graph with nodes as digital logic gates and edges as signal wires.

&

ADVERSARY MODEL: GLITCH-EXTENDED d-THRESHOLD PROBING [ISW03,FGM+18]
Free placement of up to d probes on wires that leak the value of the last stable signals (synchronization points).

SECURITY DEFINITION: d-PROBING SECURITY
Distribution of adversarial any observation (probes) can be simulated without knowledge of any secret.

@ |
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BACKGROUND | BOOLEAN MASKING
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‘%\, PROTECTION MECHANISM: BOOLEAN MASKING
@—=-5 Each secret bit x is replaced by a vector of bits (xg, x4, ..., X4_1, X4) such that each true subset is independent of x

L& putx= X0 D x1 DD x45_1 D x4.
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BACKGROUND | PROTECTION VIA COMPOSITION
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INSECURE GATES ARE REPLACED BY
SECURELY MASKED GADGETS WITH SPECIAL COMPOSABILITY PROPERTIES
(ALL INPUTS/OUTPUTS ARE SHARED)
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BACKGROUND | PROBING COMPOSABILITY

g Ky =] g ]
1}] — < 1] < L3 | 1] <= —
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dINT
by —| dint g by — dint da !:.,.,{=>
by g b — b - —aly
by < —ds ' — F—da by — —da
PNI [BBD+15] PSNI[BBD+16] PINI [CS20]
PROBE NON-INTERFERENCE PROBE STRONG NON-INTERFERENCE PROBE-ISOLATING NON-INTERFERENCE

PROBING COMPOSABILITY NOTIONS DEFINE
RULES FORTHE CORRECT AND SECURE COMPOSITION OF GADGETS
UNDER PROBE PROPAGATION (INFORMATION FLOW).
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BACKGROUND | RANDOM PROBING MODEL

ADVERSARY MODEL: p-RANDOM PROBING [DDF14]
Allwires leak information, but each individual wire only leaks with probability p.

SECURITY DEFINITION: (p, €)-RANDOM PROBING SECURITY [DDF14]
A circuit is (p, €)-random probing secure if the probability of leaking secret information is bounded by €.

@ |
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BACKGROUND | THRESHOLD FAULTING MODEL

ADVERSARY MODEL: k-THRESHOLD FAULTING [IPS+06,RSG23]
Free selection of up to k gates which are manipulated according to a chosen fault transformation (fault model).

SECURITY DEFINITION: k-FAULT SECURITY
Faulty behavior can be detected or corrected at the circuit output.

@ |
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BACKGROUND | REPLICATION

% PROTECTION MECHANISM: REPLICATION
%—g Each bit x is replaced by a vector of bits (xo, xl . a1 x") suchthatx! = x/.
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BACKGROUND | FAULTING COMPOSABILITY
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FNI [DN20] FSNI[DN20] FINI [FRS+22]
FAULT NON-INTERFERENCE FAULT STRONG NON-INTERFERENCE FAULT-ISOLATING NON-INTERFERENCE
ki +kinyr <k ki+kine <k

ky+king <k

FAULTING COMPOSABILITY NOTIONS DEFINE
RULES FORTHE CORRECT AND SECURE COMPOSITION OF GADGETS
UNDER FAULT PROPAGATION (INFORMATION FLOW).
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BACKGROUND | THRESHOLD COMBINED MODEL
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ADVERSARY MODEL: (d,k)-THRESHOLD COMBINED PROBING AND FAULTING [DN20,RFS+22]
Free placement of up to k faults on gates orrandomness and up to d probes on wires.

SECURITY DEFINITION: (d,k)-COMBINED SECURITY

Faulty behavior can be detected/corrected at the output (integrity) and the distribution of the adversarial observation
(probes) in the faulty circuit can be simulated without access to any secret (confidentiality).

@ |
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BACKGROUND | MASKING & REPLICATION

MASKING
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‘%\, PROTECTION MECHANISM: MASK-THEN-REPLICATE

LY fault propagation.
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@—& Combination of countermeasures is non-trivial, due to reciprocal effects, e.g., removal of entropy and conditional
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BACKGROUND | REMOVAL OF ENTROPY
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THE REMOVAL OF ENTROPY (THROUGH FAULTS) CAN RESULT IN
ENHANCEMENT OF PROBE PROPAGATION
(LEAKAGE INFORMATION FLOW).
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BACKGROUND | CONDITIONAL FAULT PROPAGATION

CONDITIONAL FAULT PROPAGATION CAN RESULT IN
LEAKAGE THAT IS OBSERVABLE THPROUGH THE EFFECTIVENESS OF FAULTS.
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BACKGROUND | COMBINED COMPOSABILITY
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CNI[DN20]
COMBINED NON-INTERFERENCE

k1+k1NT <k

COMBINED COMPOSABILITY NOTIONS DEFINE
RULES FORTHE CORRECT AND SECURE

COMPOSITION OF GADGETS UNDER

PROBE PROPAGATION AND FAULT PROPAGATION

(INFORMATION FLOW).

CSNI [DN20]
COMBINED STRONG NON-INTERFERENCE

k1+k1NT <k

k,/), ::‘ QdINT do
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ICSNI[DN20]
INDEPENDENT COMBINED STRONG
NON-INTERFERENCE
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CINI[FRS+22]
COMBINE-ISOLATING NON-INTERFERENCE

diyt +do + ki +king < d

k? ::: QdINT 0

: s e

ICINI [FRS+22]
INDEPENDENT COMBINE-ISOLATING
NON-INTERFERENCE

dint +do+k+king < d

22



AGENDA

1. WHO WE ARE

MOTIVATION | WHY SECURITY VERIFICATION?
BACKGROUND | SECURITY MODELS
VERIFICATION | TECHNIQUES AND TOOLS
RESULTS | CASE STUDIES

CONCLUSION
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SCA

FIA

CA

VERIFICATION | TOOL LANDSCAPE

W;E A2 WQ% FAry@ FANO WQ_%

oo = oo = oo = oo = oo =

[BGI+18] [BBC+19] [KSM20] [BCP+20] [BMR+22] [BFG+25]

A

FIVER

[AWM+20] [RSS+21]

A2
CCIEL=) R

VERICA

[RFS+22]

DUE TO THE INCREASING COMPLEXITY OF THE SECURITY MODELS,
STATE-OF-THE-ART REASONING TOOLS ARE MOSTLY RESTRICTED TO THE THRESHOLD MODELS
WHILE ONLY VERY FEW TOOLS CONSIDER THE RANDOM MODELS.
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VERIFICATION | GENERAL CONCEPT

DESIGN SPECIFICATION CIRCUIT MODEL SYMBOLIC SIMULATION VERIFICATION

0

= 1/ \n Qﬂ

= 75

OUR PRACTICAL IMPLEMENTATION OF SECURITY VERIFICATION IS
A MULTI-STAGE PROCESS THAT IS BASED ON
SPECIAL DATA STRUCTURES AND THE REFORMULATION OF SECURITY PROPERTIES.
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VERIFICATION | THRESHOLD PROBING SECURITY

Pr[Probes|Secret| = Pr[Probes]

A CIRCUIT C WITH SECRET INPUT IS d-THRESHOLD PROBING SECURE, IF AND ONLY IF
FOR ANY COMBINATION OF UPTO d PROBED WIRES, THE PROCESSED SECRET
IS STATISTICALLY INDEPENDENT OF THE OBSERVATION.
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VERIFICATION | BINARY DECISION DIAGRAMS (BDDS)
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(REDUCED, ORDERED) BINARY DECISION DIAGRAMS ARE A CONCISE DATA STRUCTURE TO
STORE, MANIPULATE, SIMULATE, AND EVALUATE

BOOLEAN FUNCTIONS.

PROACT TRAINING SCHOOL | CHANIA, CRETE, GREECE | JUNE 4, 2025

27



VERIFICATION | SYMBOLIC SIMULATION OF CIRCUITS (USING BDDS)

new BDD x, BDDtO=xy"r

new BDDr ----- - ey BDDt;=x A r

new BDD x; !
E’ - - BDDy0=t2At4
Xy E : E
| o bocooeees BDDt,=t3 A r
new BIDD Xy L'"i """""""""""" BDDt;=1t; & X,

new BDD r
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VERIFICATION | CHECKING STATISTICAL INDEPENDENCE WITH BDDS

SATCOUNT OPERATION

EIRE R
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SATCOUNT(f) = 4
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STATISTICAL INDEPENDENCE

Pr{X =1,Y =1] = Pr{X = 1] - Pf{Y = 1]
Pr[X = 1,Y = 0] = Pr{X = 1] - Pr{Y = 0]
Pr[X =0,Y = 1] = Pr{X = 0] - Pr{Y = 1]

BDDS AS BINARY RANDOM VARIABLES

SATCOUNT(X)

PriX =1] =
#ASSIGNMENTS(X)

PrlXx =0] =1 — Pr{X = 1]

SATCOUNT(X & Y)

PriX=1Y=1] =
#ASSIGNMENTS(X &)

SATCOUNT(X & 1Y)

PriX=1Y=0] =
#ASSIGNMENTS(X & 1Y)

_ SATCOU NT(IX & Y)
" HASSIGNMENTS(!X & Y)

Prix =0,Y = 1]
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VERIFICATION | THRESHOLD FAULTING SECURITY

Circuit 545 (X) D Circuitggy, ., (X) =0

A CIRCUIT C IS k-THRESHOLD FAULT SECURE (UNDER FAULT CORRECTION), IF AND ONLY IF
FOR ANY COMBINATION OF UP TO k FAULTED GATES,
THE CORRECT AND FAULTY RESULTS ARE INDISTINGUISHABLE.
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VERIFICATION | CHECKING INDISTINGUISHABILITY WITH BDDS

Ty
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_/D .Il . . THE NUMBEREFFECTIVE FAULTS CORRESPONDS TO THE

NUMBER OF SATISFYING ASSIGNMENTS
OF THE CHECK FUNCTION.
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VERIFICATION | THRESHOLD COMBINED SECURITY

COMBINED SECURITY (SIMPLIFIED DEFINITION)

A CIRCUIT C IS COMBINED SECURE IF AND ONLY IF
FOR ANY SET OF UP TO k FAULTS, AND ANY SET OF UP TO d PROBES,
CONFIDENTIALITY AND INTEGRITY IS ENSURED.
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VERIFICATION | MULTI-TERMINAL BINARY DECISION DIAGRAMS (MTBDDS)
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MULTI-TERMINAL BINARY DECISION DIAGRAMS EXTEND BINARY DECISION DIAGRAMS
AND ARE USED TO SYMBOLICALLY REPRESENT A BOOLEAN FUNCTION
WHOSE CODOMAIN IS AN ARBITRARY FINITE SET S.
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VERIFICATION | ENCODING PROBABILITY DISTRIBUTIONS WITH MTBDDS

B Yo

DISCRETE PROBABILITY DISTRIBUTION VECTOR OF OCCURENCES MULTI-TERMINAL BINARY DECISION DIAGRAM

/2 @)
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g .’.tlf :r?]

1 . .

d =i o

3 :r:_’] .\-:zx'- I:r: : J{t_;'-
O \ 3 ) Gl [ G [ @ &
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VERIFICATION | ENCODING TRANSITIONS AS BINARY DECISION DIAGRAMS

(5=

3
1_]_)% I
i
b =)
TRANSITION RELATION TRANSITION FUNCTION ADVERSARIAL OBSERVATION
D0 0 —+ 0
o0 1 =+ 1 1
v 1L 0 = 0 1 1 walid transition
01 1 = 1 0 Tlxg.x1,7. 0. 1] =
1 0 0 —+ 1 0 0 else
1 0 1 =+ 0 1
1 1 0 =+ 1 1
1 1 1 =+ o 0 G§=T-%

WE ENCODE VALIT TRANSITIONS BETWEEN INPUTS AND OBSERVATIONS (PROBES) AS
TRANSITION FUNCTION AND STORE IT AS BINARY DECISION DIAGRAM.
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VERIFICATION | DERIVING THE LEAKAGE FUNCTION

COMPUTING THE LEAKAGE PROBABILITY
(GIVEN THE LEAKAGE FUNCTION)
FOLLOWS A SLIGHTLY MODIFIED SATCOUNT ALGORITHM.

P12

SECRET-DEPENDENT OBSERVATIONS FOURIER-HADAMARD TRANSFORM LEAKAGE FUNCTION

duk Lk

oy
) % L

1 combination leaks

OO Lipo.p,. ... =
XXX (e piz) {ﬂ sl

Duyx () = |He'W)| = [Hy " () f:FP>RB - Z (—DBI f(y)

y EFP
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RESULTS | THRESHOLD PROBING MODEL (SILVER)

Scheme Pos.T E Probing NI SNI PINI Unif.
std. rob. std. rob. std. rob. std. rob.

Gadgets

DOM [29] 19 1 Vv[0.0s] V[0.0s] V[0.0s] V[0.0s] V[0.0s] 'x[0.0s] 'X[0.0s] X[0.0s] v[0.0s]
DOM [29] 42 2 ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] X[0.0s] X[0.0s] X[0.0s] v[0.0s]
DOM [29] 74 3  ¥[0.2s] V[1.2s] V[2.5s] ¥[24.4s] ¥[3.7s] %[0.0s] X[0.0s] x[0.0s] v[0.0s]
DOM SNI [26] 21 1 V¥[0.0s] V¥[0.0s] ¥[0.0s] V¥[0.0s] ¥[0.0s] ¥[0.0s] X[0.0s] ¥[0.0s] [0.0s]
DOM SNI [26] 45 2 ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] X[0.0s] X[0.0s] v[0.0s]
DOM SNI [26] 78 3 ¥[0.1s] ¥[1.5s] ¥[2.4s] ¥[39.4s] ¥[3.7s] ¥[39.4s] 'X[0.0s] x[0.0s] v[0.0s]
PARAL [5] 22 1 V[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] 'X[0.0s] 'X[0.0s] v[0.0s]
PARA2 [5] 45 2 7[0.0s8] ¥[0.0s] ¥[0.1s8] ¥[0.1s] ¥[0.0s] ¥[0.0s] X[0.0s] X[0.0s] v[0.0s]
PARA3 [5] 68 3 V[0.1s] ¥[0.5s] V[1.6s] V[12.1s] %/¥[0.8s] 'X[0.0s] 'X[0.0s] 'X[0.0s] v[0.0s]
PARA3 SNI [5] 82 3 ¥[0.2s] ¥[1.2s] ¥[2.8s] ¥[33.0s] ¥[4.1s] ¥[38.7s] X[0.0s] ¥[0.0s] [0.0s]
PINI1 [17] 21 1 v[0.0s] %[0.0s] Vv[0.0s] ¥[0.0s] Vv[0.0s] [0.0s] Vv[0.0s] X[0.0s] v[0.0s]
PINI2 [17] 51 2  ¥[0.0s] 'x[0.0s] ¥[0.0s] 'x[0.0s] ¥[0.0s] 'X[0.0s] ¥[0.0s] 'X[0.0s] v[0.0s]
HPC1 [16] 22 1 V[0.0s] V¥[0.0s] ¥[0.0s] ¥[0.0s] V¥[0.0s] [0.0s] ¥[0.0s] ¥[0.0s] v[0.0s]
HPC1 [16] 52 2  ¥7[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] X[0.0s] ¥[0.0s] ¥[0.0s] v[0.0s]
HPC2 [16] 32 1 V¥[0.0s] V[0.0s] ¥[0.0s] V¥[0.0s] V¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] [0.0s]
HPC2 [16] 75 2  ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] [0.0s] ¥[0.0s] ¥[0.0s] v[0.0s]
ISW SNI REF [26] 26 1 ¥[0.0s] ¥[0.0s] ¥[0.0s] V¥[0.0s] ¥[0.0s8] ¥[0.0s] ¥[0.0s] ¥[0.0s] v[0.0s]

ISW SNI REF [26] 65 2  %[0.0s] ¥%[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] ¥[0.0s] v[0.0s]

CMS3 [36] 104 3 ¥x/¥[0.2s]%/%[0.4s] X/¥[1.2s]%/¥[2.95s] X/¥[1.7s]1X/¥[4.6s] X[0.0s] X[0.0s] v[0.0s]
UMA2 [36] 81 2 %*/V¥[0.0s]%/V[0.0s] %/¥[0.0s]%/V[0.0s] %/¥[0.08]%/¥[0.0s] X[0.0s] ¥[0.0s] [0.0s]
pom2 DEPY [36] 56 2  ¥[0.0s]%/¥[0.0s] ¥[0.0s]%/¥[0.05] ¥[0.0s] x[0.0s] ¥[0.0s]%/¥[0.0s] /[0.0g]
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VERIFICATION | THRESHOLD FAULTING MODEL (FIVER)

Verification Parameter Design Properties Analysis Results
Redundancy
(Capability*) C(n,t,1) Variate Complexity Comb. Seq. Logic Combinations Time Security
[bits] Reduction Gates Gates Stages [s]
CRAFT — 1 round (detection)
1(1) ¢(1, 7T, cs) univariate no 845 80 2 766 0.021 v
1(1) C(2,7pf, c8) univariate no 845 80 2 151561  0.769 X
3(2) C(2,7pf, c8) univariate no 1410 112 2 329730  1.496 v
3(2) ¢(3, 7. cs) univariate no 1410 112 2 64 320469 441 X
, , e no 1679 128 2 91737144 2937
43) (3,75, 05) vmivariate 1679 128 2 4665200 360
CRAFT — 2 rounds (detection)
1(1) C(1, 7, cs) univariate no 1571 160 3 1491 0.378 v
1(1) C(2,7pf, c8) univariate no 1571 160 3 417882 62 X
3(2) ((2,7pf, cs) univariate no 2526 224 3 868500 157
N no 2526 224 3 250984 950 oo -
3(2) (3,77, 05) univariate 2526 224 3 7364279 408 X
CRAFT — 2 rounds — multivariate (detection)
1(1) ¢(1,7ef,cs) bivariate no 1720 160 3 682832 140 v
1(1) C(1, 7, cs) trivariate yes 1720 160 3 99542528 26955 v
3(2) ¢(2,7sr,8) bivariate no 2015 224 3 38651200 81897
CRAFT — 1 round (correction)
3 (1) ¢(1,7pf,cs) univariate no 2868 112 2 2788  0.081 v
3 (1) ¢(2,Tps, cs) univariate no 2868 112 2 3201690 22 X
7(2) @ ) univariat no 17460 176 2 129651034 3543 v
»Tof, €3] UnIvaniate ves 17460 176 2 10923888 130 ¢
LED-64 — 1 round (detection)
1(1) C(1, 7, cs) univariate no 1541 0 1 1301 0.064 v
1 (1) ¢(2,7bf,cs) univariate no 1541 0 1 846951  9.558 X
3(2) C(2,Thf. cs) univariate no 2435 0 1 1730730 27 v
3(2) ¢(3, 7Ty, cs) univariate no 2435 0 1 1072477550 12722 X
. . I no 2916 0 1 1654087449 17348 v
403) C(3,7vs,05) univariate 2916 0 1 3983413 04 v
AES-128 — 1 round (detection)
1(1) ¢(1, 765, cs) univariate no 24864 0 1 24432 2 v
- no 34159 0 1 298473528 oC -
1(2) C(2,70s,c5) univariate O 34159 0 1 56632584 471281

" The capability determines the maximum number of faults that can be detected or corrected by the correspond-
ing countermeasure.
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VERIFICATION | THRESHOLD COMBINED MODEL (VERICA)

Gadget Design SCA FIA Combined

d k rand. comb. memory PNI PSNI Time FNI FSNI Time (d, k) Time
NINA 11 0 4 0 1¥ — 0460s 1 — 0.429s (1,1)  0.430s
NINA 12 0 6 0 17 - 0455s 27 — 04455 & (1,2)7  0.492s
NINA 21 0 6 0 27 — 047ls 1Y — 0451s © (2,1  0.436s
NINA 22 0 9 0 20 - 0442s 2/ - 0.444s (2,27 0.442s
SNINA 11 1 22 16 - 1/ 0476s — 17 0.449s (1,1)”  0.473s
SNINA 12 1 38 26 - 17 045ls — 27 0500s & (1,2)Y  0.519s
SNINA 2 1 3 57 33 — 27 0566s — 17 0456s &5 @001 0.592s
SNINA 22 3 96 54 — 27 0821s - 27 0.673s 22011 1.062s
SININA 11 2 90 30 - 17 0450s - 17 046ls  (1LD*007 0.456s
SININA 12 3 360 50 — 17 0.555s — 27 1.395s = (1,2/00) 17.985s
SININA 21 6 207 63 — 27 1334s — 1/ 0511s & @D%00)7 73.574s
SININA* 2 2 9 825 105 — 2/ 76.030s — 2/ 5300s  (22%00¢ >2.7h

* Due to the high verification complexity, we interrupted the combined analysis after testing (2, 1)-SININA where VERICA already reported

a failure.
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VERIFICATION | THRESHOLD COMBINED MODEL (VERICA)
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RESULTS | RANDOM PROBING MODEL (INDIANA)

Cycle Positions Probes Samples Leakage Time
part. X wires  part. X probes  part. X samples  min. / max.  totally elapsed

1 16 x 72 16 X 2 16 X 2556 0.056/0.458 1.20 min
2 16 x 138 16 x 2 16 x 9453 0.785/0.966 6.25 min
3 16 X 72 16 x 2 16 X 2556 0.099/9.472 39.33 min
4 16 x 52 16 X 2 16 x 1326 0.145/0.296 39.43 min
5 16 x 52 16 x 2 16 X 1326 0.034/0.236 39.53 min
6 16 x 92 16 x 2 16 X 4186 0.406/9.738 39.79 min
7 16 x 304 16 X 2 16 x 46056 0.992/0.999 3.33h
8 16 x 102 16 x 2 16 X 5151 0.149/0.767 3.58 h
9 4 x 324 16 x 2 4 X 52326 0.051/p.981 3.76 h
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RESULTS | RANDOM PROBING MODEL (INDIANA)
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AGENDA

1. WHO WE ARE

MOTIVATION | WHY SECURITY VERIFICATION?
BACKGROUND | SECURITY MODELS
VERIFICATION | TECHNIQUES AND TOOLS
RESULTS | CASE STUDIES

CONCLUSION

o o~ O Db
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CONCLUSION | SUMMARY OF THIS TALK

SECURITY MODEL AND DEFINITIONS

= probing, faulting and combined models

= composability notions for gadget-based protection

VERIFICATION TECHNIQUES AND TOOLS

Binary Decision Diagrams and Multi-Terminal BDDs
= gstatisticalindependence leakage verification (SILVER)
= golden and faulty circuits comparison (FIVER)
= indistinguishability analysis and leakage functions

(INDIANA)

THANK YOU FOR YOUR ATTENTION!
DO YOU HAVE ANY QUESTIONS?

pascal.sasdrich@rub.de
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