

AUTOMATED VERIFICATION OF PHYSICAL SECURITY PROPERTIES

PASCAL SASDRICH

PROACT TRAINING SCHOOL | CHANIA, CRETE, GREECE | JUNE 4, 2025

ACKNOWLEDGEMENT

JAN RICHTER-BROCKMANN

JAKOB FELDTKELLER

THE BOCHUM CYBERSECURITY ECOSYSTEM

A UNIQUE SECURITY ECOSYSTEM

- Leading research institutions: 300 researchers, 1000 students
- Numerous successful start-ups, supported through incubator
- Home of various established companies (G-Data, escrypt)

COMPUTER-AIDED VERIFICATION (CAVE) GROUP

ACTIVE AND PASSIVE PHYSICAL IMPLEMENTATION ATTACKS

- Side-Channel Analysis (SCA)
- Fault-Injection Analysis (FIA)
- Combined Attacks (CA)

FORMAL SECURITY DEFINITIONS AND MODELS

- Adversary models for SCA, FIA, and CA
- Security models and definitions for SCA, FIA, and CA
- Compositional properties of security definitions

COMPUTER-AIDED SECURITY ENGINEERING

- Automated formal verification of physical security properties (today)
- Computer-aided design and generation of secure design
- Automated optimization and automated repair of secure designs

DR.-ING. PASCAL SASDRICH

GROUP LEADER

PHD CANDIDATE

MOTIVATION | STANDARD ADVERSARY

ADVERSARY CAN SEND AND RECEIVE

INPUTS AND OUTPUTS OF CRYPTOGRAPHIC OPERATIONS

(BLACK-BOX MODEL)

MOTIVATION | PHYSICAL ADVERSARY

ADVERSARY CAN OBSERVE AND MANIPULATE

THE PHYSICAL EXECUTION ENVIRONMENT OF THE DEVICE

(GRAY-BOX MODEL)

MOTIVATION | SECURITY TESTING

SIDE-CHANNEL ANALYIS

FAULT INJECTION ANALYIS

TEST QUALITY IS HIGHLY DEPENDENT ON

EVALUTOR'S RIGOR, EXPERTISE, AND CREATIVITY.

TESTING CANNOT OFFER GUARANTEES.

PROACT TRAINING SCHOOL | CHANIA, CRETE, GREECE | JUNE 4, 2025

MOTIVATION | SECURITY VERIFICATION

FORMAL VERIFICATION USES MATHEMATICAL MODELS THAT

REPRESENT SYSTEMS AND ATTACKERS TO PROOF SECURITY

(WITHIN THE CONSIDERED MODELS)

AGENDA

- 1. WHO WE ARE
- 2. MOTIVATION | WHY SECURITY VERIFICATION?
- 3. BACKGROUND | SECURITY MODELS
- 4. VERIFICATION | TECHNIQUES AND TOOLS
- 5. **RESULTS** | CASE STUDIES
- 6. CONCLUSION

BACKGROUND | (ROBUST) THRESHOLD PROBING MODEL

SYSTEM MODEL: DIGITAL LOGIC CIRCUIT

We model digital logic circuits as a directed graph with nodes as digital logic gates and edges as signal wires.

ADVERSARY MODEL: GLITCH-EXTENDED d-THRESHOLD PROBING [ISW03, FGM+18]

Free placement of up to d probes on wires that leak the value of the last stable signals (synchronization points).

SECURITY DEFINITION: d-PROBING SECURITY

Distribution of adversarial any observation (probes) can be simulated without knowledge of any secret.

BACKGROUND | BOOLEAN MASKING

PROTECTION MECHANISM: BOOLEAN MASKING

Each secret bit x is replaced by a vector of bits $\langle x_0, x_1, ..., x_{d-1}, x_d \rangle$ such that each true subset is independent of x but $x = x_0, \oplus x_1 \oplus \cdots \oplus x_{d-1} \oplus x_d$.

BACKGROUND | PROTECTION VIA COMPOSITION

INSECURE GATES ARE REPLACED BY

SECURELY MASKED GADGETS WITH SPECIAL COMPOSABILITY PROPERTIES

(ALL INPUTS/OUTPUTS ARE SHARED)

BACKGROUND | PROBING COMPOSABILITY

PNI [BBD+15] PROBE NON-INTERFERENCE

 $\underline{d_{INT} + d_O} \le d$

PSNI [BBD+16] PROBE STRONG NON-INTERFERENCE

 $d_{INT} + d_0 \le d$

PINI [CS20] PROBE-ISOLATING NON-INTERFERENCE

 $\underline{d_{INT} + d_O} \le d$

PROBING COMPOSABILITY NOTIONS DEFINE

RULES FOR THE CORRECT AND SECURE COMPOSITION OF GADGETS

UNDER PROBE PROPAGATION (INFORMATION FLOW).

BACKGROUND | RANDOM PROBING MODEL

SYSTEM MODEL: DIGITAL LOGIC CIRCUIT

We model digital logic circuits as a directed graph with nodes as digital logic gates and edges as signal wires.

ADVERSARY MODEL: p-RANDOM PROBING [DDF14]

All wires leak information, but each individual wire only leaks with probability p.

SECURITY DEFINITION: (p, ϵ) -RANDOM PROBING SECURITY [DDF14]

A circuit is (p, ϵ) -random probing secure if the probability of leaking secret information is bounded by ϵ .

BACKGROUND | THRESHOLD FAULTING MODEL

SYSTEM MODEL: DIGITAL LOGIC CIRCUIT We model digital logic circuits as a directed graph with nodes as digital logic gates and edges as signal wires.

ADVERSARY MODEL: k-THRESHOLD FAULTING [IPS+06,RSG23]

Free selection of up to k gates which are manipulated according to a chosen fault transformation (fault model).

SECURITY DEFINITION: k-FAULT SECURITY

Faulty behavior can be detected or corrected at the circuit output.

BACKGROUND | REPLICATION

BACKGROUND | FAULTING COMPOSABILITY

FNI [DN20] FAULT NON-INTERFERENCE

 $k_I + k_{INT} \le k$

FSNI [DN20] FAULT STRONG NON-INTERFERENCE **FINI [FRS+22]** FAULT-ISOLATING NON-INTERFERENCE

 $k_I + k_{INT} \le k$

 $k_I + k_{INT} \le k$

FAULTING COMPOSABILITY NOTIONS DEFINE

RULES FOR THE CORRECT AND SECURE COMPOSITION OF GADGETS

UNDER FAULT PROPAGATION (INFORMATION FLOW).

BACKGROUND | THRESHOLD COMBINED MODEL

SYSTEM MODEL: DIGITAL LOGIC CIRCUIT We model digital logic circuits as a directed graph with nodes as digital logic gates and edges as signal wires.

ADVERSARY MODEL: (d,k)-THRESHOLD COMBINED PROBING AND FAULTING [DN20,RFS+22] Free placement of up to *k* faults on gates or randomness and up to *d* probes on wires.

SECURITY DEFINITION: (d,k)-COMBINED SECURITY

Faulty behavior can be detected/corrected at the output (integrity) and the distribution of the adversarial observation (probes) in the faulty circuit can be simulated without access to any secret (confidentiality).

BACKGROUND | MASKING & REPLICATION

PROTECTION MECHANISM: MASK-THEN-REPLICATE

Combination of countermeasures is non-trivial, due to reciprocal effects, e.g., **removal of entropy** and **conditional fault propagation**.

BACKGROUND | REMOVAL OF ENTROPY

THE REMOVAL OF ENTROPY (THROUGH FAULTS) CAN RESULT IN

ENHANCEMENT OF PROBE PROPAGATION

(LEAKAGE INFORMATION FLOW).

BACKGROUND | CONDITIONAL FAULT PROPAGATION

CONDITIONAL FAULT PROPAGATION CAN RESULT IN

LEAKAGE THAT IS OBSERVABLE THPROUGH THE EFFECTIVENESS OF FAULTS.

BACKGROUND | COMBINED COMPOSABILITY

CNI [DN20] COMBINED NON-INTERFERENCE

 $\frac{d_{INT} + d_0}{k_I + k_{INT}} \le k$

 $\frac{d_{INT} + d_0 + k_I + k_{INT}}{k_I + k_{INT} \le k} \le d$

d_{INT}

k_{INT}

 $c_{\rm B}$

63

 d_0

de

da.

 d_0

COMPOSITION OF GADGETS UNDER

PROBE PROPAGATION AND FAULT PROPAGATION

(INFORMATION FLOW).

ICSNI [DN20] INDEPENDENT COMBINED STRONG NON-INTERFERENCE

ICINI [FRS+22] INDEPENDENT COMBINE-ISOLATING NON-INTERFERENCE

 $\frac{d_{INT} + d_0}{k_I + k_{INT}} \le k$

AGENDA

- 1. WHO WE ARE
- 2. MOTIVATION | WHY SECURITY VERIFICATION?
- 3. BACKGROUND | SECURITY MODELS
- 4. VERIFICATION | TECHNIQUES AND TOOLS
- 5. **RESULTS** | CASE STUDIES
- 6. CONCLUSION

PROACT TRAINING SCHOOL | CHANIA, CRETE, GREECE | JUNE 4, 2025

VERIFICATION | TOOL LANDSCAPE

THRESHOLD MODELS

RANDOM MODELS

DUE TO THE INCREASING COMPLEXITY OF THE SECURITY MODELS,

STATE-OF-THE-ART REASONING TOOLS ARE MOSTLY RESTRICTED TO THE THRESHOLD MODELS

WHILE ONLY VERY FEW TOOLS CONSIDER THE RANDOM MODELS.

VERIFICATION | GENERAL CONCEPT

OUR PRACTICAL IMPLEMENTATION OF SECURITY VERIFICATION IS

A MULTI-STAGE PROCESS THAT IS BASED ON

SPECIAL DATA STRUCTURES AND THE REFORMULATION OF SECURITY PROPERTIES.

Pr[Probes|Secret] = Pr[Probes]

A CIRCUIT C WITH SECRET INPUT IS *d*-THRESHOLD PROBING SECURE, IF AND ONLY IF FOR ANY COMBINATION OF UP TO *d* PROBED WIRES, THE PROCESSED SECRET IS **STATISTICALLY INDEPENDENT** OF THE OBSERVATION.

VERIFICATION | BINARY DECISION DIAGRAMS (BDDS)

BOOLEAN FUNCTION

 $f = \overline{x_0} \cdot \overline{x_1} \cdot \overline{x_2} + x_0 \cdot x_1 + x_1 \cdot x_2$

TRUTH TABLE

BINARY DECISION TREE

(REDUCED, ORDERED) BINARY DECISION DIAGRAM

(REDUCED, ORDERED) BINARY DECISION DIAGRAMS ARE A CONCISE DATA STRUCTURE TO

STORE, MANIPULATE, SIMULATE, AND EVALUATE

BOOLEAN FUNCTIONS.

VERIFICATION | SYMBOLIC SIMULATION OF CIRCUITS (USING BDDS)

VERIFICATION | CHECKING STATISTICAL INDEPENDENCE WITH BDDS

SATCOUNT OPERATION

COUNTING SATISFYING ASSIGNMENTS

SATCOUNT(f) = 4

STATISTICAL INDEPENDENCE

FOR TWO BINARY RANDOM VARIABLES

 $Pr[X = 1, Y = 1] = Pr[X = 1] \cdot Pr[Y = 1]$ $Pr[X = 1, Y = 0] = Pr[X = 1] \cdot Pr[Y = 0]$ $Pr[X = 0, Y = 1] = Pr[X = 0] \cdot Pr[Y = 1]$ $Pr[X = 0, Y = 0] = Pr[X = 0] \cdot Pr[Y = 0]$

BDDS AS BINARY RANDOM VARIABLES COMPUTING PROBABILTIES USING BDDS

 $Pr[X = 1] = \frac{SATCOUNT(X)}{\#ASSIGNMENTS(X)}$ Pr[X = 0] = 1 - Pr[X = 1]

 $Pr[X = 1, Y = 1] = \frac{SATCOUNT(X \& Y)}{\#ASSIGNMENTS(X \& Y)}$ $Pr[X = 1, Y = 0] = \frac{SATCOUNT(X \& !Y)}{\#ASSIGNMENTS(X \& !Y)}$ $Pr[X = 0, Y = 1] = \frac{SATCOUNT(!X \& Y)}{\#ASSIGNMENTS(!X \& Y)}$

VERIFICATION | THRESHOLD FAULTING SECURITY

$\operatorname{Circuit}_{golden}(X) \oplus \operatorname{Circuit}_{faulty}(X) = \mathbf{0}$

A CIRCUIT C IS *k*-THRESHOLD FAULT SECURE (UNDER FAULT CORRECTION), IF AND ONLY IF FOR ANY COMBINATION OF UP TO *k* FAULTED GATES, THE CORRECT AND FAULTY RESULTS ARE **INDISTINGUISHABLE**.

VERIFICATION | CHECKING INDISTINGUISHABILITY WITH BDDS

VERIFICATION | THRESHOLD COMBINED SECURITY

COMBINED SECURITY (SIMPLIFIED DEFINITION)

A CIRCUIT C IS COMBINED SECURE IF AND ONLY IF

FOR ANY SET OF UP TO k FAULTS, AND ANY SET OF UP TO d PROBES,

CONFIDENTIALITY AND **INTEGRITY** IS ENSURED.

PROACT TRAINING SCHOOL | CHANIA, CRETE, GREECE | JUNE 4, 2025

VERIFICATION | MULTI-TERMINAL BINARY DECISION DIAGRAMS (MTBDDS)

MULTI-TERMINAL BINARY DECISION DIAGRAMS EXTEND BINARY DECISION DIAGRAMS AND ARE USED TO SYMBOLICALLY REPRESENT A BOOLEAN FUNCTION WHOSE CODOMAIN IS AN ARBITRARY FINITE SET S.

VERIFICATION | ENCODING PROBABILITY DISTRIBUTIONS WITH MTBDDS

VERIFICATION | ENCODING TRANSITIONS AS BINARY DECISION DIAGRAMS

WE ENCODE VALIT TRANSITIONS BETWEEN INPUTS AND OBSERVATIONS (PROBES) AS

TRANSITION FUNCTION AND STORE IT AS BINARY DECISION DIAGRAM.

VERIFICATION | DERIVING THE LEAKAGE FUNCTION

AGENDA

- 1. WHO WE ARE
- 2. MOTIVATION | WHY SECURITY VERIFICATION?
- 3. BACKGROUND | SECURITY MODELS
- 4. VERIFICATION | TECHNIQUES AND TOOLS
- 5. **RESULTS** | CASE STUDIES
- 6. CONCLUSION

PROACT TRAINING SCHOOL | CHANIA, CRETE, GREECE | JUNE 4, 2025

RESULTS | THRESHOLD PROBING MODEL (SILVER)

Scheme	$\mathbf{Pos.}^{\dagger}$	d	Probing		N	I	SI	11	PINI		Unif.
		_	std.	rob.	std.	rob.	std.	rob.	std.	rob.	
Gadgets											
DOM [29]	19	1	¼ [0.0 s]	¹ ∕[0.0 s]	¹ ∕[0.0 s]	¹ ∕[0.0 s]	¼ [0.0 s]	¹ X [0.0 s]	¹ ४ [0.0 s]	¹ <mark>≯</mark> [0.0 s]	√ [0.0 s]
DOM [29]	42	2	⅔ [0.0 s]	∛ [0.0 s]	∛ [0.0 s]	⅔ [0.0 s]	∛ [0.0 s]	¹ ४ [0.0 s]	¹ × [0.0 s]	¹ ४ [0.0 s]	√[0.0s]
DOM [29]	74	3	$\sqrt[3]{[0.2 s]}$	∛[1.2 s]	∛[2.5 s]	$\sqrt[3]{[24.4 s]}$	∛[3.7 s]	¹ ४ [0.0 s]	¹ X [0.0 s]	¹ ४ [0.0 s]	√ [0.0 s]
DOM SNI [26]	21	1	¼ [0.0 s]	¹ ∕[0.0 s]	¹ ∕[0.0 s]	¹ ∕[0.0 s]	∛[0.0 s]	¹ ∕[0.0 s]	¹ ४ [0.0 s]	¹ <mark>≯</mark> [0.0 s]	√ [0.0 s]
DOM SNI [26]	45	2	⅔ [0.0 s]	∛ [0.0 s]	∛[0.0 s]	²∕[0.0 s]	∛ [0.0 s]	²∕[0.0 s]	¹ × [0.0 s]	¹ ∦[0.0 s]	√[0.0s]
DOM SNI [26]	78	3	∛[0.1 s]	∛[1.5 s]	$\sqrt[3]{[2.4 s]}$	∛[39.4 s]	∛[3.7 s]	∛[39.4 s]	¹ ४ [0.0 s]	¹ × [0.0 s]	√ [0.0 s]
PARA1 [5]	22	1	¹ ∕[0.0 s]	¹ ∕[0.0 s]	¹ ∕[0.0 s]	¹ ∕[0.0 s]	∛[0.0 s]	¹ ∕[0.0 s]	¹ ४ [0.0 s]	¹ <mark>≯</mark> [0.0 s]	√ [0.0 s]
PARA2 [5]	45	2	²∕[0.0 s]	²∕[0.0 s]	²∕[0.1 s]	²∕[0.1 s]	²∕[0.0 s]	²∕[0.0 s]	¹ × [0.0 s]	¹ X [0.0 s]	√[0.0s]
PARA3 [5]	68	3	∛[0.1 s]	∛[0.5 s]	$\sqrt[3]{[1.6 s]}$	∛[12.1 s]	³ X /⅔[0.8 s]	¹ ४ [0.0 s]	¹ X [0.0 s]	¹ × [0.0 s]	√ [0.0 s]
PARA3 SNI [5]	82	3	∛[0.2 s]	∛[1.2 s]	∛[2.8 s]	∛[33.0 s]	∛[4.1 s]	∛[38.7 s]	¹ ४ [0.0 s]	¹ ४ [0.0 s]	√ [0.0 s]
PINI1 [17]	21	1	¹ ∕[0.0 s]	¹ ∦[0.0 s]	$\frac{1}{2}[0.0 s]$	¹ × [0.0 s]	$\frac{1}{2}[0.0 s]$	¹ X [0.0 s]	$\frac{1}{2}[0.0 s]$	¹ ∦[0.0 s]	√[0.0 s]
PINI2 [17]	51	2	∛ [0.0 s]	¹ ४ [0.0 s]	∛ [0.0 s]	¹ X [0.0 s]	²∕[0.0 s]	¹ ४ [0.0 s]	∛ [0.0 s]	¹ ४ [0.0 s]	√ [0.0 s]
HPC1 [16]	22	1	¹ ∕[0.0 s]	¹ ∕[0.0 s]	¹ ∕[0.0 s]	$\frac{1}{2}[0.0 s]$	¹ ∕[0.0 s]	¹ × [0.0 s]	$\frac{1}{2}[0.0 s]$	¹ ∕[0.0 s]	√[0.0s]
HPC1 [16]	52	2	²∕[0.0 s]	²∕[0.0 s]	²∕[0.0 s]	²∕[0.0 s]	²∕[0.0 s]	¹ ×[0.0 s]	²∕[0.0 s]	²∕[0.0 s]	√[0.0s]
HPC2 [16]	32	1	½ [0.0 s]	¼ [0.0 s]	¹ ∕[0.0 s]	½ [0.0 s]	¹ ∕[0.0 s]	$\frac{1}{[0.0 s]}$	¹ ∕[0.0 s]	$\frac{1}{2}[0.0 s]$	√[0.0s]
HPC2 [16]	75	2	²∕[0.0 s]	²∕[0.0 s]	²∕[0.0 s]	²∕[0.0 s]	²∕[0.0 s]	¹ ४ [0.0 s]	²∕[0.0 s]	²∕[0.0 s]	√ [0.0 s]
ISW SNI REF [26]	26	1	½ [0.0 s]	½ [0.0 s]	½ [0.0 s]	∲[0.0 s]	½ [0.0 s]	½ [0.0 s]	¼ [0.0 s]	¹ ∕[0.0 s]	√[0.0s]
ISW SNI REF [26]	65	2	²∕[0.0 s]	∛ [0.0 s]	∛ [0.0 s]	²∕[0.0 s]	²∕[0.0 s]	²∕[0.0 s]	∛ [0.0 s]	²∕[0.0 s]	√ [0.0 s]
CMS3 [36]	104	3	³ × /⅔[0.2 s] ³	×/⅔[0.4s]	³ X /⅔[1.2 s] ³	×/²∕[2.9 s]	³ X /⅔[1.7 s] ³	×/∛[4.6 s]	¹ ×[0.0 s]	¹ × [0.0 s]	√[0.0s]
UMA2 [36]	81	2	$\frac{2}{\sqrt{1}}[0.0 \text{ s}]^2$	×/√[0.0s]	$\frac{2}{1}$ [0.0 s] ²	×/√[0.0 s]	$\frac{2}{\sqrt{1}} [0.0 \text{ s}]^2$	×//[0.0s]	¹ × [0.0 s]	¹ ×[0.0 s]	√[0.0s]
DOM2 DEP [‡] [36]	56	2	²∕[0.0 s]²	×/√[0.0s]	²∕[0.0 s]	×/√[0.0 s]	²∕[0.0 s]	¹ ४ [0.0 s]	²∕[0.0 s]²	×/∛[0.0 s]	√[0.0s]

VERIFICATION | THRESHOLD FAULTING MODEL (FIVER)

Redundancy	Verific	ation Para	ameter	\mathbf{Design}	n Prop	oerties	Analysis Results				
$({f Capability}^{*}) \\ [bits]$	$\zeta(n,t,l)$	Variate	Complexity Reduction	Comb. Gates	Seq. Gates	Logic Stages	Combinations	Time [s]	Security		
CRAFT – 1 ro	und (detec	tion)									
1(1)	$\zeta(1, \tau_{bf}, cs)$	univariate	no	845	80	2	766	0.021	1		
1 (1)	$\zeta(2, \tau_{bf}, cs)$	univariate	no	845	80	2	151561	0.769	×		
3(2)	$\zeta(2, \tau_{bf}, cs)$	univariate	no	1410	112	2	329730	1.496	1		
3(2)	$\zeta(3, \tau_{bf}, cs)$	univariate	no	1410	112	2	64320469	441	×		
4 (2)	$\zeta(2 - z_0)$	universiste	no	1679	128	2	91737144	2937	✓		
4(3)	$\zeta(s, au_{bf}, cs)$	univariate	yes	1679	128	2	4665200	360	1		
CRAFT - 2 ro	unds (dete	ction)									
1(1)	$\zeta(1, \tau_{bf}, cs)$	univariate	no	1571	160	3	1491	0.378	1		
1(1)	$\zeta(2, \tau_{bf}, cs)$	univariate	no	1571	160	3	417882	62	×		
3(2)	$\zeta(2, \tau_{bf}, cs)$	univariate	no	2526	224	3	868500	157	1		
2 (2)	$\zeta(2 - z_0)$	universiste	no	2526	224	3	250984950	∞	_		
3 (2)	$\zeta(s, \tau_{bf}, cs)$	univariate	yes	2526	224	3	7364279	408	×		
CRAFT - 2 ro	CRAFT – 2 rounds – multivariate (detection)										
1(1)	$\zeta(1, \tau_{bf}, cs)$	bivariate	no	1720	160	3	682832	140	1		
1(1)	$\zeta(1, \tau_{bf}, cs)$	trivariate	yes	1720	160	3	99542528	26955	1		
3(2)	$\zeta(2, \tau_{sr}, s)$	bivariate	no	2915	224	3	38651200	81897	1		
CRAFT – 1 ro	und (corre	ction)									
3(1)	$\zeta(1, \tau_{bf}, cs)$	univariate	no	2868	112	2	2788	0.081	1		
3(1)	$\zeta(2, \tau_{bf}, cs)$	univariate	no	2868	112	2	3201690	22	×		
7(0)	$\zeta(0 = -1)$		no	17460	176	2	129651034	3543	1		
I(2)	$\zeta(z, au_{bf}, cs)$	univariate	yes	17460	176	2	10923888	130	1		
LED-64 - 1 ro	und (detect	tion)									
1(1)	$\zeta(1, \tau_{bf}, cs)$	univariate	no	1541	0	1	1301	0.064	1		
1(1)	$\zeta(2, \tau_{bf}, cs)$	univariate	no	1541	0	1	846951	9.558	×		
3(2)	$\zeta(2, \tau_{bf}, cs)$	univariate	no	2435	0	1	1730730	27	1		
3(2)	$\zeta(3, \tau_{bf}, cs)$	univariate	no	2435	0	1	1072477550	12722	×		
4 (2)	$\zeta(2 - z)$	univariate	no	2916	0	1	1654087449	17348	1		
4 (3)	$\zeta(3, au_{bf}, cs)$		yes	2916	0	1	3983413	94	1		
AES-128 – 1 round (detection)											
1(1)	$\dot{\zeta}(1, \tau_{bf}, cs)$	univariate	no	24864	0	1	24432	22	1		
4 (0)	č(9 –		no	34159	0	1	298473528	∞	_		
4 (2)	$\zeta(2, \tau_{bf}, cs)$	univariate	yes	34159	0	1	56632584	471281	1		

 * The capability determines the maximum number of faults that can be detected or corrected by the corresponding countermeasure.

VERIFICATION | THRESHOLD COMBINED MODEL (VERICA)

Gadget	Design			SCA			FIA				Combined			
	d	k	rand.	comb.	memory	PNI	PSNI	Time	FNI	FSNI	Time		(d,k)	Time
NINA	1	1	0	4	0	11	_	$0.460\mathrm{s}$	11	_	$0.429\mathrm{s}$		(1,1)	$0.430\mathrm{s}$
NINA	1	2	0	6	0	1^{\prime}	_	$0.455\mathrm{s}$	2^{\checkmark}	_	$0.445\mathrm{s}$	IN	(1,2)	$0.492\mathrm{s}$
NINA	2	1	0	6	0	2 ′	_	$0.471\mathrm{s}$	1^{\checkmark}	_	$0.451\mathrm{s}$	G	(2,1)	$0.436\mathrm{s}$
NINA	2	2	0	9	0	2^{\checkmark}	_	$0.442\mathrm{s}$	2^{\checkmark}	_	$0.444\mathrm{s}$		(2,2)	$0.442\mathrm{s}$
SNINA	1	1	1	22	16	_	1^{\checkmark}	$0.476\mathrm{s}$	_	1^{\checkmark}	$0.449\mathrm{s}$		(1,1)	$0.473\mathrm{s}$
SNINA	1	2	1	38	26		1'	$0.451\mathrm{s}$	_	2 '	$0.500\mathrm{s}$	Ν	(1,2)	$0.519\mathrm{s}$
SNINA	2	1	3	57	33	_	2^{\checkmark}	$0.566\mathrm{s}$	_	1^{\checkmark}	$0.456\mathrm{s}$	CS	$(2,1)^{x}/(1,1)^{\checkmark}$	$0.592\mathrm{s}$
SNINA	2	2	3	96	54	_	2^{\checkmark}	$0.821\mathrm{s}$	_	2^{\checkmark}	$0.673\mathrm{s}$	-	$(2,2)^{x}/(1,1)^{\checkmark}$	$1.062\mathrm{s}$
SININA	1	1	2	90	30	_	11	$0.450\mathrm{s}$	_	11	$0.461\mathrm{s}$		$(1,1)^{x}/(0,0)^{\checkmark}$	$0.456\mathrm{s}$
SININA	1	2	3	360	50	_	1'	$0.555\mathrm{s}$	_	2 ~	$1.395\mathrm{s}$	IN	$(1,2)^{x}/(0,0)^{\checkmark}$	$17.985\mathrm{s}$
SININA	2	1	6	207	63		2 ~	$1.334\mathrm{s}$	_	1^{\checkmark}	$0.511\mathrm{s}$	CS	$(2,1)^{x}/(0,0)^{\checkmark}$	$73.574\mathrm{s}$
SININA*	2	2	9	825	105	_	2^{\checkmark}	$76.030\mathrm{s}$	_	2^{\checkmark}	$5.300\mathrm{s}$	Η	$(2,2)^{x}/(0,0)^{\checkmark}$	$> 2.7 \mathrm{h}$

* Due to the high verification complexity, we interrupted the combined analysis after testing (2, 1)-SININA where VERICA already reported

a failure.

VERIFICATION | THRESHOLD COMBINED MODEL (VERICA)

RESULTS | RANDOM PROBING MODEL (INDIANA)

VERIFICATION OF A FULL AES ROUND (PIPELINED, 16 S-BOXES IN PARALLEL)

Cycle	Positions	Probes	Samples	Leakage	Time	
	part. \times wires	part. \times probes	part. \times samples	min. / max.	totally elapsed	
1	16 imes 72	16 imes 2	16 imes 2556	0.056/0.458	$1.20\mathrm{min}$	
2	16 imes 138	16 imes 2	16 imes 9453	0.785/0.966	$6.25\mathrm{min}$	
3	16×72	16 imes 2	16 imes 2556	0.099/0.472	$39.33 \min$	
4	16 imes 52	16 imes 2	16 imes 1326	0.145/0.296	$39.43 \min$	
5	16×52	16 imes 2	16 imes 1326	0.034/0.236	$39.53 \min$	
6	16 imes 92	16 imes 2	16×4186	0.406 / 0.738	$39.79 \min$	
7	16 imes 304	16 imes 2	16 imes 46056	0.992/0.999	3.33 h	
8	16 imes 102	16 imes 2	16×5151	0.149/0.767	$3.58 \mathrm{h}$	
9	4×324	16 imes 2	4×52326	0.051/0.981	$3.76~\mathrm{h}$	

RESULTS | RANDOM PROBING MODEL (INDIANA)

AGENDA

- 1. WHO WE ARE
- 2. MOTIVATION | WHY SECURITY VERIFICATION?
- 3. BACKGROUND | SECURITY MODELS
- 4. VERIFICATION | TECHNIQUES AND TOOLS
- 5. **RESULTS** | CASE STUDIES
- 6. CONCLUSION

PROACT TRAINING SCHOOL | CHANIA, CRETE, GREECE | JUNE 4, 2025

CONCLUSION | SUMMARY OF THIS TALK

SECURITY MODEL AND DEFINITIONS

- probing, faulting and combined models
- composability notions for gadget-based protection

VERIFICATION TECHNIQUES AND TOOLS

- Binary Decision Diagrams and Multi-Terminal BDDs
- statistical independence leakage verification (SILVER)
- golden and faulty circuits comparison (FIVER)
- indistinguishability analysis and leakage functions (INDIANA)

THANK YOU FOR YOUR ATTENTION! DO YOU HAVE ANY QUESTIONS?

pascal.sasdrich@rub.de

LITERATURE

- [AWM+20] Victor Arribas, Felix Wegener, Amir Moradi, Svetla Nikova. Cryptographic Fault Diagnosis using VerFI. HOST 2020.
- [BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin Grégoire, François-Xavier Standaert. maskVerif: Automated Verification of Higher-Order Masking in Presence of Physical Defaults. ESORICS 2019.
- [[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub. Verified Proofs of Higher-Order Masking. EUROCRYPT 2015.
- [BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, Rébecca Zucchini. Strong Non-Interference and Type-Directed Higher-Order Masking. CCS 2016.
- [BCP+20] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Abdul Rahman Taleb. Random Probing Security: Verification, Composition, Expansion and New Constructions. CRYPTO 2020.
- [BFG+24] Sonia Belaïd, Jakob Feldtkeller, Tim Güneysu, Anna Guinet, Jan Richter-Brockmann, Matthieu Rivain, Pascal Sasdrich, Abdul Rahman Taleb: Formal Definition and Verification for Combined Random Fault and Random Probing Security. ASIACRY PT 2024.
- [BFG+25] Christof Beierle, Jakob Feldtkeller, Anna Guinet, Tim Güneysu, Gregor Leander, Jan Richter-Brockmann, Pascal Sasdrich. INDIANA Verifying (Random) Probing Security Through Indistinguishability Analysis. EUROCRYPT 2025.
- [BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Mangard, Johannes Winter. Formal Verification of Masked Hardware Implementations in the Presence of Glitches. EUROCRYPT 2018.
- [BMR+22] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, Abdul Rahman Taleb. IronMask: Versatile Verification of Masking Security. IEEE SP 2022.
- [CS20] Gaëtan Cassiers, François-Xavier Standaert. Trivially and Efficiently Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE TIFS 2020.
- [DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage Models: from Probing Attacks to Noisy Leakage. EUROCRYPT 2014.
- [DN20] Siemen Dhooghe and Svetla Nikova. My Gadget Just Cares for Me How NINA Can Prove Security Against Combined Attacks. CT-RSA 2020.
- [DN23] Siemen Dhooghe, Svetla Nikova: The Random Fault Model. SAC 2023.
- [FGM+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and Francois-Xavier Standaert. Composable Masking Schemes in the Presence of Physical Defaults & the Robust Probing Model. IACR TCHES 2018.
- [FRS+22] Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. CINI MINIS: Domain Isolation for Fault and Combined Security. CCS, 2022
- [IPS+06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, David A. Wagner. Private Circuits II: Keeping Secrets in Tamperable Circuits. EUROCRYPT 2006.
- [ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing Hardware against Probing Attacks. CRYPTO 2003.
- [KSM20] David Knichel, Pascal Sasdrich, Amir Moradi. SILVER Statistical Independence and Leakage Verification. ASIACRY PT 2020.
- [RFS+22] Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, Tim Güneysu. VERICA Verification of Combined Attacks: Automated formal verification of security against simultaneous information leakage and tampering. IACR TCHES 2022.
- [RSG23] Jan Richter-Brockmann, Pascal Sasdrich, Tim Güneysu. Revisiting Fault Adversary Models Hardware Faults in Theory and Practice. IEEE TC 2023.
- [RSS+21] Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir Moradi, Tim Güneysu. FIVER Robust Verification of Countermeasures against Fault Injections. IACR TCHES 2021.